Categories and λ-calculus
I am tutoring exercise sessions for the course of categories and λ-calculus, which is taught by Paul-André Melliès and is part of the the MPRI master. More meterial is available on the webpage of the course (and see here for the rooms).
2022-2023
- Cartesian categories (solution)
- Coproducts, pullbacks, monoids (solution)
- Adjunctions (solution)
- Computing in the λ-calculus
- Strong normalization of the λ-calculus (solution)
- Realizability (solution)
- Algebras (solution)
- Monads (solution)
- Graphs and the Yoneda lemma (solution)
2021-2022
- Isomorphismes et spans
- Products, coproducts, pullbacks, monomorphisms
- Adjunctions
- An alternative formulation of adjunctions
- Quantifiers as adjoints
- Computing in the λ-calculus
- Strong normalization of the λ-calculus
- Normalization by evaluation
- Realizability
- Algebras
- Distributive laws between monads
- Graphs and the Yoneda lemma
2020-2021
- Cartesian categories (solution)
- Coproducts, pullbacks, monoids (solution)
- Adjunctions (solution)
- An equivalent formulation of adjunctions
- Equalizers, epi-mono factorization, first-order logic
- Computing in the λ-calculus (solution)
- Normalizing in the λ-calculus (solution)
- Algebras (solution)
- Monads (solution)
- Algebras for a monad (solution)
- Graphs and the Yoneda lemma
2019-2020
- Pullbacks, monos, epis and subobjects
- Equalizers, epi-mono factorization, first-order logic
- An equivalent formulation of adjunctions
- λ-calculus: confluence, termination
- Distributivity laws between functors and monads, Grothendieck construction and set-theoretic colimits
- Algebras
2018-2019
- Cartesian categories
- Coproducts, pullbacks, monoids
- Adjunctions
- Monads
- λ-calculus: confluence, termination
- Algebras
- Algebras for a monad
- Distributive laws between monads
2017-2018
- Cartesian categories
- Adjunctions
- Graphs and the Yoneda lemma
- Monads and algebras
- Presheaves as cocompletion
2016-2017
- Cartesian categories
- Graphs and the Yoneda lemma
- Pullbacks, monos, epis and subobjects
- Equalizers, epi-mono factorization, first-order logic
- Algebras
- A reformulation of adjunctions
- Distributivity laws between monads – Grothendieck construction and set-theoretic colimits
2015-2016
- Cartesian categories
- Graphs, adjunctions, monads
- Algebras
- λ-calculus and cartesian closed categories
- Categories of presheaves and colimits
2014-2015
- Cartesian categories
- Graphs, adjunctions, monads
- λ-calculus
- Algebras
- Realizability
- Presheaf categories, (co)limits
- Presentations of monoidal categories
2013-2014
- λ-calculus
- Graphs, adjunctions, monads
- Adjunctions, monads
- Cartesian and monoidal categories
- Algebras
- Closed categories
- Limits, presheaf categories
2012-2013
- λ-calculus
- Graphs, adjunctions, monads
- Adjunctions, monads
- Rewriting
- Realizability
- Cartesian categories
- Monoidal theories
- Limits, presheaf categories
2011-2012
- Graphes, catégories cartésiennes
- Monades
- Réalisabilité
- Adjunctions and monads
- λ-calculus
- Cartesian closed categories
- Catégories compactes closes
2010-2011
- Catégories cartésiennes
- Adjonctions
- Adjunctions and monads
- λ-calculus
- Cartesian closed categories
- Semantics of fixpoint
2009-2010
- Monoïdes
- Adjonctions, monade de non-déterminisme
- Monades
- Catégories cartésiennes fermées
- Catégories monoïdales
- Catégories compactes closes
- Catégories monoïdales tracées
- Catégories monoïdales tracées
- Modèles fonctoriels
- Limites, présentations de catégories
- Présentations de catégories monoïdales
- Lois distributives, catégories de jeux
Useful links
- Le Master Parisien de Recherche en Informatique (MPRI)
- The ENS diploma
- Paul-André Melliès’ course
- The n-lab