Travaux Dirigés Equalizers, epi-mono factorization, first-order logic

 λ -calculs et catégories

1 Equalizers and coequalizers

In this exercise, we study the notion of equalizer (called "égalisateur" in French) and its dual notion of coequalizer. Suppose given a pair of coinitial and cofinal arrows

$$f, q: X \longrightarrow Y$$

in a category \mathscr{C} . An equalizer of f and g is an arrow $m:E\longrightarrow X$ such that

$$f \circ m = g \circ m$$

and such that, for every arrow $n: F \longrightarrow X$ such that

$$f \circ n = g \circ n$$

there exists a unique arrow $h: F \longrightarrow E$ such that

$$n = m \circ h$$
.

- §1. Show that every pair of functions $f,g:X\longrightarrow Y$ has an equalizer $m:E\longrightarrow X$ in the category Sets and describe this equalizer.
- §2. Show that when it exists in a category \mathscr{C} , the equalizer $m: E \longrightarrow X$ of a pair of arrows $f, g: X \longrightarrow Y$ is a mono.
- §3. Formulate the dual notion of coequalizer $e:Y\longrightarrow Q$ of two arrows

$$f, g: X \Longrightarrow Y$$

in a category \mathscr{C} .

- §4. Show that when it exists in a category \mathscr{C} , the coequalizer $e:Y\longrightarrow Q$ of two arrows $f,g:X\longrightarrow Y$ is an epi.
- §5. Show that every pair of functions $f, g: X \longrightarrow Y$ has a coequalizer $e: Y \longrightarrow Q$ in the category Sets and describe this coequalizer.
- §6. An epi $e:Y\longrightarrow Q$ is called regular when there exists a pair of arrows $f,g:X\longrightarrow Y$ such that e is a coequalizer of f and g as in the diagram below:

$$X \xrightarrow{g} Y \xrightarrow{e} Q$$

Show that every surjective function $e:A\longrightarrow B$ is a regular epi in the category Sets.

2 Epi-mono factorization

An arrow $f:A\to B$ is orthogonal to an arrow $g:X\to Y$ in a category $\mathscr C$ when for every pair of arrows $u:A\to X$ and $v:B\to Y$ making the diagram below commute

$$\begin{array}{ccc} A & \stackrel{u}{\longrightarrow} X \\ \downarrow^{f} & & \downarrow^{g} \\ B & \stackrel{v}{\longrightarrow} Y \end{array}$$

there exists a unique arrow $h: B \longrightarrow X$ making the diagram below commute

$$\begin{array}{ccc}
A & \xrightarrow{u} & X \\
\downarrow^f & & \downarrow^g \\
B & \xrightarrow{u} & Y
\end{array}$$

in the sense that

$$u = h \circ f$$
 and $v = g \circ h$.

We write in that case

$$f \perp g$$
.

A factorisation system $(\mathcal{E}, \mathcal{M})$ is a pair of collections \mathcal{E} and \mathcal{M} of arrows of the category \mathscr{C} satisfying the three properties below:

A. every arrow

$$X \stackrel{f}{\longrightarrow} Y$$

of the category $\mathscr C$ factors as

$$X \stackrel{e}{\longrightarrow} U \stackrel{m}{\longrightarrow} Y$$

where $e \in \mathcal{E}$ and $m \in \mathcal{M}$.

B. every arrow $e \in \mathcal{E}$ is orthogonal to every arrow $m \in \mathcal{M}$, what we write

$$\mathcal{E} \perp \mathcal{M}$$
.

C. both collections \mathcal{E} and \mathcal{M} are closed under composition and contain the isos.

The purpose of the exercise is to show that the category Sets is equipped with a factorisation system $(\mathcal{E}, \mathcal{M})$ where \mathcal{E} and \mathcal{M} are respectively the collections of surjective and of injective functions.

§1. Show that every function

$$X \stackrel{f}{\longrightarrow} Y$$

factors as

$$X \xrightarrow{e} U \xrightarrow{m} Y$$

where $e: X \longrightarrow U$ is a surjective function and $m: U \longrightarrow Y$ is an injective function.

- §2. Show that every surjective function $e:A\to B$ is orthogonal to every injective function $m:X\to Y$ in the category Sets.
- §3. Deduce from §1 and §2 that $(\mathcal{E}, \mathcal{M})$ defines a factorization system in Sets, where \mathcal{E} and \mathcal{M} are respectively the collections of surjective and injective functions in Sets.
- §4. Suppose given a category $\mathscr C$ equipped with a factorization system $(\mathcal E,\mathcal M)$ and a commutative diagram

$$X_1 \xrightarrow{e_1} U_1 \xrightarrow{m_1} Y_1$$

$$\downarrow v$$

$$X_2 \xrightarrow{e_2} U_2 \xrightarrow{m_2} Y_2$$

where $e_1, e_2 \in \mathcal{E}$ and $m_1, m_2 \in \mathcal{M}$. Show that there exists a unique arrow $h: U_1 \to U_2$ making the diagram below commute:

$$\begin{array}{c|cccc} X_1 & \stackrel{e_1}{\longrightarrow} & U_1 & \stackrel{m_1}{\longrightarrow} & Y_1 \\ \downarrow & & \downarrow & & \downarrow v \\ X_2 & \stackrel{e_2}{\longrightarrow} & U_2 & \stackrel{m_2}{\longrightarrow} & Y_2 \end{array}$$

in the category \mathscr{C} .

§5. Suppose given a category $\mathscr C$ whose collections $\mathcal E$ of epis and $\mathcal M$ of monos define a factorization system $(\mathcal E,\mathcal M)$. Show that every arrow $f:X\to Y$ induces a subobject $(U,m)\in \mathbf{Sub}(Y)$ defined as the unique subobject of Y such that the arrow $f:X\to Y$ factors as

$$X \stackrel{e}{\longrightarrow} U \stackrel{m}{\longrightarrow} Y$$

for a given epi $e:X\to U$. Show that in the case of the category Sets, the construction associates to every function $f:X\to Y$ its image in the set Y. For that reason, one often calls the subobject $m:U\to Y$ the image of the arrow $f:X\to Y$.

§6. Suppose that we are still in the situation of §5. Show that every arrow $f:A\to B$ of the category $\mathscr C$ induces a monotone function

$$f_* : \mathbf{Sub}(A) \longrightarrow \mathbf{Sub}(B)$$

which transports every subobject (U, m) to the image $f_*(U, m)$ of the composite arrow

$$U \stackrel{m}{\longrightarrow} A \stackrel{f}{\longrightarrow} B$$

using the notion of "image" of an arrow $f \circ m : U \to B$ formulated in §5.

§7. Show that in the particular case $\mathscr{C} = \mathbf{Sets}$, one associates in this way to every function $f: A \to B$ the monotone function

$$f_* : \mathscr{P}(A) \longrightarrow \mathscr{P}(B)$$

which transports every subset $U \subseteq A$ to its image $f(U) \subseteq B$.

§8. Suppose that we are in the situation of §5 and that the category $\mathscr C$ has moreover pullbacks. We have seen in the previous TD that every arrow

$$f:A\longrightarrow B$$

induces in that case a monotone function

$$f^* : \mathbf{Sub}(B) \longrightarrow \mathbf{Sub}(A)$$

defined by "pulling back" subobjects $(V, n) \in \mathbf{Sub}(B)$ into subobjects $(U, m) \in \mathbf{Sub}(A)$. Show that the monotone function f_* is left adjoint to f^* in the sense that

$$f_*(U, m) \le (V, n) \iff (U, m) \le f^*(V, n)$$

for every pair of subobjects $(U, m) \in \mathbf{Sub}(A)$ and $(V, n) \in \mathbf{Sub}(B)$.

3 Application to first-order logic

Consider a family of sets X_1, \ldots, X_n and their cartesian product $\Gamma = X_1 \times \ldots \times X_n$. Every first-order formula φ with free variables x_1, \ldots, x_n induces a subset

$$[\varphi] \subseteq \Gamma$$

consisting of all the elements $(x_1, \ldots, x_n) \in \Gamma$ satisfying the formula φ . Note that the interpretation $[\varphi]$ of the formula φ can be also seen as an element of the powerset:

$$[\varphi] \in \mathscr{P}(\Gamma).$$

 $\S 1$. Every set X induces a function

$$\pi: \Gamma \times X \longrightarrow \Gamma$$

defined by the first projection. Given a first-order formula φ with free variables x_1, \ldots, x_n , show that the subset

$$\pi^*[\varphi] = \{(x_1, \dots, x_n, x) \in \Gamma \times X \mid \varphi(x_1, \dots, x_n)\}$$

coincides with the interpretation of the same formula φ seen as a formula with free variables x_1, \ldots, x_n, x .

§2. Given a first-order formula ψ with free variables x_1, \ldots, x_n, x and with interpretation

$$[\psi] \in \mathscr{P}(\Gamma \times X)$$

show that

$$\pi_*[\psi] = \{ (x_1, \dots, x_n) \in \Gamma \mid \exists x \in X, \psi(x_1, \dots, x_n, x) \}.$$

coincides with the interpretation $[\exists_{x \in X} \psi]$ of the formula $\exists_{x \in X} \psi$.

§3. From this, deduce that

$$[\exists_{x \in X} \, \psi] \leq_{\Gamma} [\varphi] \quad \Longleftrightarrow \quad [\psi] \leq_{\Gamma \times X} [\varphi]$$

where we write $U \leq_{\Gamma} V$ for the inclusion $U \subseteq V$ between subsets $U, V \in \mathscr{P}(\Gamma)$. Justify this equivalence from the point of view of first-order logic.