
TD3 – Adjunctions, monads

Samuel Mimram

October 18, 2012

1 Monads generated by an adjunction

1. Recall that a functor F : C → D is left adjoint to a functor G : D → C iff there exists two
natural transformations

η : idC → G ◦ F and ε : F ◦G→ idD

respectively called the unit and counit of the adjunction, such that

εF · Fη = idF and Gε · ηG = idG (1)

Describe the unit and counit corresponding the adjunctions studied in previous questions.

2. Show the above property.

3. Recall that a 2-category of categories, functors and natural transformations can be defined.
What are the vertical and horizontal compositions in this category? What is the “exchange
law” in a 2-category?

4. For every monad T : C → C, the multiplication µ can be thus seen as a 2-cell

C
T

��
C

T

66

T

>>⇓ µ C

in this 2-category. By constructing the Poincaré dual of this diagram, we thus get a repre-
sentation of the natural transformation µ using string diagrams. Similarly, give the string
diagrammatic representation of the laws defining a monad as well as the laws (1).

5. Given an adjunction (F,G, η, ε), show that the functor G◦F can be equipped with a structure
of monad.

6. What are the monads associated the adjunction whose right adjoint is the forgetful functor
from pSet/Mon/Vect/Top to Set?

7. Show that the forgetful functor U : Top→ Set also admits a right adjoint.

8. [Optional] Show that if T is a monad on a category C then the category C is in adjunction
with the category CT .



2 Monads in Rel

We define Rel as the 2-category whose 0-cells are sets, 1-cells R : A→ B are relations R ⊆ A×B,
there is a unique 2-cell α : R⇒ R′ : A→ B whenever R ⊆ R′.

1. Recall both horizontal and vertical compositions in Rel.

2. Show that a left adjoint in Rel is a function.

3. What is a monad in Rel?

3 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface
to various data or control structures, which is captured
by the Monad class. All common monads are members of it:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

In addition to implementing the class functions, all
instances of Monad should obey the following equations:

return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. Show that this notion of monad is equivalent to the categorical definition of monads.

2. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
(Just x) >>= f = f x

3. What does the List monad defined below do?

instance Monad [] where
m >>= f = concatMap f m
return x = [x]


