
Monads

Samuel Mimram
samuel.mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

January 9, 2023

I The exception monad

Given an adjunction F ⊣ G between categories C and D, the composite T = G ◦ F is always equipped
with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write Set∗ for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a ∈ A, and morphisms f : (A, a) → (B, b) are functions such that f(a) = b. Here, the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : Set∗ → Set.

2. Construct a functor F : Set → Set∗ which is such that the sets Set∗(FA, (B, b)) and Set(A,U(B, b))
are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

3. We recall that a monad consists of an endofunctor T : C → C together with two natural transfor-
mations µ : T ◦ T ⇒ T and η : idC ⇒ T such that the following diagrams commute:

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT µ

µ

T T ◦ T T

T
idT

ηT

µ

Tη

idT

Describe a structure of monad on T = U ◦ F .

4. Explain how a function A → TB can be seen as “a function A → B which might raise an exception”.

5. Given f : A → B an OCaml function which might raise an unique exception e and g : B → C
a function which might raise an unique exception e′, construct a function corresponding to the
composite of f and g which might raise a unique exception e′′.

6. Given an arbitrary monad T on a category C, we write CT for the category whose objects are the
objects of C and morphisms f : A → B in CT are morphisms f : A → TB in C, called the Kleisli
category associated to T . Define composition and identities and show that the axioms of categories
are satisfied.

7. Give an explicit description of SetT in the case of the above exception monad.

II More monads

1. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by a Kleisli
construction?

2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

http://lambdacat.mimram.fr/


III Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures,

which is captured by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the

following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

2. What does the List monad defined below do?

instance Monad [] where

m >>= f = concatMap f m

return x = [x]

A Kleisli triple (T, η, (−)∗) on a category C consists of

– a function T : Ob(C) → Ob(C),

– a function ηA : A → TA for every object A of C,

– a morphism f∗ : TA → TB for every morphism f : A → TB,

such that for every objects A, B, C and morphisms f : A → TB and g : B → TC,

η∗A = idTA f∗ ◦ ηA = f g∗ ◦ f∗ = (g∗ ◦ f)∗

Our aim is to show that this data amounts to specify a monad on C.

3. Construct the Kleisli category associated to a Kleisli triple.

4. Show that every Kleisli triple induces a monad.

5. Conversely show that every monad induces a Kleisli triple.

We admit that the two transformations are mutually inverse.

http://www.haskell.org/haskellwiki/Monad

	The exception monad
	More monads
	Monads in Haskell

