
λ-calculus: confluence, termination

We recall that λ-terms t are of the form x (a variable) or λx.t (an abstraction) or tu (an
application). The β-reduction is the closure under context of the relation (λx.t)u → t[u/x],
i.e. the relation generated by

(λx.t)u→ t[u/x]

t→ t′

λx.t→ λx.t′
t→ t′

tu→ t′u

u→ u′

tu→ tu′

We write
∗→ for the reflexive and transitive closure of →.

1 Reduction graphs

The reduction graph of a λ-term t is the graph, whose vertices are λ-terms, defined as the smallest
graph such that t is a vertex and there is an arrow between two vertices t and t′ whenever t→ t′.

1. Write the respective reduction graphs of

(λx.xx)(λy.y)z and (λxy.x)((λx.xx)(λxy.xy))

2. Can a reduction graph have loops?

3. Can a reduction graph be infinite?

4. Can a reduction graph be infinitely branching?

2 Confluence of the λ-calculus

Our goal is to show that the β-reduction is confluent, i.e. u1
∗← t

∗→ u2 implies that there exists v
such that u1

∗→ v
∗← u2.

1. Show that β-reduction is locally confluent : u1 ← t → u2 implies that there exists v such
that u1

∗→ v
∗← u2.

2. Does local confluence imply confluence in general?

The parallel reduction t⇒ u on λ-terms is defined by:

x⇒ x

t⇒ t′ u⇒ u′

(λx.t)u⇒ t′[u′/x]

t⇒ t′

λx.t⇒ λx.t′
t⇒ t′ u⇒ u′

tu⇒ t′u′

3. Show that ⇒ is reflexive.

4. Show that ⇒ has the diamond property : u1 ⇐ t⇒ u2 implies that there exists v such that
u1 ⇒ v ⇐ u2.

5. Show that ⇒ is confluent.

6. Show that → ⊆ ⇒ ⊆ ∗→. Provide counter-examples showing that these inclusions are strict.

7. Conclude that → is confluent.

1



3 Termination of the simply typed λ-calculus

We recall the rules of the simply-typed λ-calculus:

Γ, x : A,Γ′ ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A⇒ B

Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

where, in the first rule, we suppose x 6∈ dom(Γ′). We want to show that every typable term t (in
an arbitrary context) is strongly normalizable, meaning that there is no infinite reduction from t.

1. Can we show the property by induction on the derivation of the typing of t?

In the course of the proof, will need the following well-founded induction principle.

2. Suppose given a set X equipped with a binary relation → which is well-founded : there is no
infinite sequence of reductions. Suppose given a property P on the elements of X such that,
for every t ∈ X, we have

∀t ∈ X. ((∀t′ ∈ X. t→ t′ ⇒ P (t′))⇒ P (t))

Show that ∀t ∈ X. P (t) holds. How can we recover recurrence as a particular case of this?

We define R(A), the reducible terms of type A, by induction by

• R(A), for A atomic, is the set of strongly normalizable terms,

• R(A⇒ B) is the set of terms t such that tu ∈ R(B) for every u ∈ R(A).

A term is neutral when it is not an abstraction. We are going to show that following conditions
hold:

(CR1) if t ∈ R(A) then t is strongly normalizable,

(CR2) if t ∈ R(A) and t→ t′ then t′ ∈ R(A),

(CR3) if t is neutral and for every t′ such that t→ t′ we have t′ ∈ R(A) then t ∈ R(A).

3. Show that these conditions imply that a variable x belongs to R(A) for every type A.

4. Show the conditions (CR1), (CR2) and (CR3) by induction on A.

5. Suppose that t[u/x] ∈ R(B) for every u ∈ R(A). Show that λx.t ∈ R(A⇒ B).

6. Suppose that x1 : A1, . . . , xn : An ` t : A is derivable. Show that for all u1 ∈ R(A1), . . . ,
un ∈ R(An), we have t[u1/x1, . . . , un/xn] ∈ R(A).

7. Show that all typable terms are reducible.

8. Show that all typable terms are strongly normalizable.

9. Use this to show that typable terms are confluent.

2


	Reduction graphs
	Confluence of the -calculus
	Termination of the simply typed -calculus

