
Realizability

Samuel Mimram

7 November 2022

Second-order logic. We write T for the set of terms over some fixed signature. The syntax of
second-order formulas is

A ::= X(a1, . . . , an) | A ⇒ B | ∀x.A | ∀X.A

where ai ∈ T , each second-order variable X having a fixed arity n. We consider typing rules which
extend those of simply-typed λ-calculus by

Γ ⊢ t : A

Γ ⊢ t : ∀x.A
Γ ⊢ t : A

Γ ⊢ t : ∀X.A

Γ ⊢ t : ∀x.A
Γ ⊢ t : A[a/x]

Γ ⊢ t : ∀X.A

Γ ⊢ t : A[B/X]

where, in the first two rules, we suppose x and X not free in Γ respectively. Note that we have three
kinds of variables in Γ ⊢ t : A: those declared in Γ and occurring in t (standing for λ-terms), those
occurring in formulas (standing for terms in T) and second-order variables (standing for formulas).

1. Show that identity can be given the type ∀X.X ⇒ X.

Solution.

x : X ⊢ x : X

⊢ λx.x ⊢ X ⇒ X

⊢ λx.x ⊢ ∀X.X ⇒ X

2. Recall the elimination rule for ∨. How can we encode this operator into our logic?

Solution. The elimination rule for disjunction is

Γ ⊢ A ∨B Γ, A ⊢ X Γ, B ⊢ X

Γ ⊢ X

This suggests that we define, with X of arity 0,

A ∨B = ∀X.(A ⇒ X) ⇒ (B ⇒ X) ⇒ X

3. Similarly, provide an encoding of the operators ∧, ⊥, ¬, first and second order existential
quantifications.

Solution. We define similarly:

A ∧B = ∀X.(A ⇒ B ⇒ X) ⇒ X

⊥ = ∀X.X

¬A = A ⇒ ⊥
∃x.A = ∀X.(∀x.(A(x) ⇒ X)) ⇒ X

∃X.A = ∀Y.(∀X.(A(X) ⇒ Y)) ⇒ Y

Realizability. We write Λ for the set of λ-terms and Π for the set of stacks, which are sequences
t1 · t2 · · · tn of λ-terms. Processes are elements (t, π) of Λ × Π, often written t ⋆ π. The reduction
relation ≻ between processes is given by the following two rules:

tu ⋆ π ≻ t ⋆ u · π
λx.t ⋆ u · π ≻ t[u/x] ⋆ π

An element of P(Π) is called a truth value. Suppose fixed a set ‚ of processes closed under
anti-reduction. We define an interpretation JAK ∈ P(Π) by induction on the formula A by

JA ⇒ BK = {t · π | t ∈ |A|, π ∈ JBK} J∀x.AK =
⋃
a∈T

JA[a/x]K J∀X.AK =
⋃

V ∈P(Π)

JA[V/X]K

where
|A| = {t ∈ Λ | ∀π ∈ JAK, t ⋆ π ∈ ‚}

denotes the set of realizers of the formula A. Above, we have supposed fixed an interpretation of
the first- and second-order free variables (by abuse of notation, given V ∈ P(Π), we still write V
for a variable whose interpretation is V). We write t ⊩ A when t ∈ |A| and say that t realizes A.

4. What are J⊥K and |⊥|?

Solution.

J⊥K = J∀X.XK =
⋃

V ∈P(Π)

V = Π |⊥| = {t ∈ Λ | ∀π ∈ Π, t ⋆ π ∈ ‚}

5. Show that |∀X.A| =
⋂

V ∈P(Π) |A[V/X]|.

Solution. We have

|∀X.A| = {t ∈ Λ | ∀π ∈ J∀X.AK, t ⋆ π ∈ ‚}

= {t ∈ Λ | ∀π ∈
⋃

V ∈P(Π)

JA[V/X]K, t ⋆ π ∈ ‚}

=
⋂

V ∈P(Π)

{t ∈ Λ | ∀π ∈ JA[V/X]K, t ⋆ π ∈ ‚}

=
⋂

V ∈P(Π)

|A[V/X]|

2

Identity-like terms. Our goal is now to characterize the behavior of terms of type ∀X.X ⇒ X.

6. Give examples of terms which are of type ∀X.X ⇒ X.

Solution. We have the identity λx.x, but also terms which reduce to the identity such as
(λx.x)(λx.x).

7. Show that (λx.x) ⋆ u · π ≻ u ⋆ π.

Solution. We have (λx.x) ⋆ u · π ≻ x[u/x] ⋆ π = u ⋆ π.

A term t ∈ Λ is identity-like when t ⋆ u · π ≻ u ⋆ π for every u ∈ Λ and π ∈ Π.

8. Show that if t is identity-like then t ⊩ ∀X.X ⇒ X.

Solution. Given an element u · π of

J∀X.X ⇒ XK =
⋃

V ∈P(Π)

|V | · V = {u · π | u ∈ |V |, π ∈ V, V ∈ P(Π)}

we have t ⋆ u · π ≻ u ⋆ π ∈ ‚.

We temporarily admit the adequation lemma: if ⊢ t : A is derivable then t ⊩ A.

9. Show the converse to previous question, i.e. ⊢ t : ∀X.X ⇒ X implies that t is identity-like
(hint: use a suitably chosen ‚).

Solution. We take ‚ to be the closure by anti-reduction of {u⋆π}. By the adequation lemma,
we have t ⊩ ∀X.X ⇒ X. Thus t ⊢ X ⇒ X for every X. Take JXK = {π}. We have u ⊩ X,
thus u · π ∈ JX ⇒ XK, thus t ⊩ u · π, i.e. t ⋆ u · π ∈ ‚, i.e. t ⋆ u · π ≻ u ⋆ π.

10. Give an example of an identity-like term which is not the identity, and even non-typable.

Solution. (λxy.x)Ω.

Booleans.

11. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which
encodes the fact that x is a boolean.

Solution. We define
Bool(x) = ∀X.X(0) ⇒ X(1) ⇒ X(x)

12. Show that ⊢ t : Bool(0) implies t ⋆ u · v · π ≻ t ⋆ π (and similarly for ⊢ t : Bool(1)).

Solution. We define ‚ to be the closure under anti-reduction of {u ⋆ π} and consider the
interpretation of X such that JX(0)K = {π} and JX(x)K = ∅ for x ̸= 0. We have u ⊩ X(0) and
v ⊩ X(1). By the adequation lemma, we have t ⊩ X(0) ⇒ X(1) ⇒ X(0), thus t ⋆ u · v ·π ∈ ‚
which gives the result.

3

Other consequences of the adequation lemma.

13. Show that there is no term such that ⊢ t : ⊥.

Solution. If this was the case, we would have t ⊩ ⊥, i.e. t ⋆ π ∈ ‚ for every π ∈ Π = J‚K.
This is absurd if we take ‚ = ∅.

14. Show that typable λ-terms are normalizing with respect to the call-by-name strategy.

Solution. The proposed reduction of the machine corresponds to the call-by-name evaluation
of a λ-term. If we take ‚ = {t ⋆ π | t ⋆ π normalizes} we can conclude.

The adequation lemma.

15. Show that t ⊩ A ⇒ B and u ⊩ A implies tu ⊩ B.

Solution. Suppose t ⊩ A ⇒ B and u ⊩ A. Given π ∈ JBK, tu ⋆ π ≻ t ⋆ u · π. Since u ∈ |A|
and π ∈ JBK, we have u · π ∈ JA ⇒ BK and thus t ⋆ u · π ∈ ‚ since t ∈ |A ⇒ B|. This tu ⋆ π
because ‚ is closed under antireduction.

16. Show that if for every u ∈ Λ, u ⊩ A implies t[u/x] ⊩ B, then λx.t ⊩ A ⇒ B.

Solution. Suppose given an element of JA ⇒ BK. It is of the form u · π with u ∈ |A| and
π ∈ JBK. We have λx.t ⋆ u · π ≻ t[u/x] ⋆ π which belongs to ‚.

17. Prove the adequation lemma: ⊢ t : A derivable implies t ⊩ A.

Solution. We proceed by induction on the proof of Γ ⊢ t : A.

• Axiom:

Γ ⊢ xi : Ai

We have to show that if ti ⊩ Ai then ti ⊩ Ai, which is obvious.

• Application, this can be deduced from question 15.

• For abstraction to go through, we need to show a more general statement:

if x1 : A1, . . . , xn : An ⊢ t : A is derivable and ∀i, ti ⊩ Ai then t[t1/x1, . . . , tn/xn] ⊩
A.

This can be checked to still be valid for the two previous cases. The abstraction rule is

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⇒ B

By induction hypothesis, we have, for every u ∈ A, t[ti/xi][u/x] ⊩ B, we deduce that
(λx.t)[ti/xi] ⊩ A ⇒ B by question 16.

• For first-order rules to go through, we actually need to show a stronger induction hy-
pothesis:

4

If x1 : A1, . . . , xn : An ⊢ t : A is derivable, with A1, . . . , An having free variables
among y1, . . . , ym then for every (ti)1≤i≤n ∈ Λn such that ti ⊩ Ai, for every
(ui)1≤i≤m ∈ T m, we have t[ti/xi] ⊩ A[ui/yi].

It is straightforward to show that the above cases can be adapted to this generalization.

– First-order introduction:
Γ ⊢ t : A

Γ ⊢ t : ∀x.A
By induction hypothesis, we have t[ti/xi] ∈ |A[ui/xi]|. Therefore,

t[ti/xi] ∈
⋂
t∈T

|A[u/x][ui/xi]| = |(∀x.A)[ui/xi]|

– First-order elimination:
Γ ⊢ t : ∀x.A
Γ ⊢ t : A[a/x]

By induction hypothesis, we have

t[ti/xi] ∈ |∀x.A[ui/xi]| =
⋂
u∈T

|A[ui/xi, u/x]| ⊇ |A[ui/xi, a/x]| = |A[a/x][ui/xi]|

• To handle second-order quantification, we also need a similar generalization of the induc-
tion hypothesis for second order variables (we can replace any second-order variable Xi

of arity ki by any function Pi : (T ∗)ki → P(Π)).

Classical logic. We extend λ-terms by adding constants cc and kπ for every π ∈ Π with reduction
rules

cc ⋆ t · π ≻ t ⋆ kπ · π kπ ⋆ t · ρ ≻ t ⋆ π

18. Show that the formula ∀X.(X ∨ ¬X) is realized.

Solution. We have that ∀X.(X ∨ ¬X) is defined as

∀X.∀Y.(X ⇒ Y) ⇒ ((X ⇒ ⊥) ⇒ Y) ⇒ Y

We consider
t = λl.r.cc(λk.r(λa.k(la)))

Fix X and Y . Given l ∈ |X ⇒ Y |, r ∈ |(X ⇒ ⊥) ⇒ Y | and π ∈ JY K, we have

t ⋆ l · r · π ≻ r ⋆ λa.kπ(la) · π

and we can thus conclude if we manage to show

λa.kπ(la) ⊩ X ⇒ ⊥

We conclude by anti-reduction since

λa.kπ(la) ⋆ a · ρ ≻ la ⋆ π ≻ l ⋆ a · π

which belongs to ‚ since a · π belongs to JX ⇒ Y K.

5

References

[1] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2009.

6

