Realizability

Samuel Mimram

7 November 2022

Second-order logic. We write \mathcal{T} for the set of terms over some fixed signature. The syntax of second-order formulas is

$$
A \quad::=\quad X\left(a_{1}, \ldots, a_{n}\right) \quad|\quad A \Rightarrow B \quad| \quad \forall x . A \quad \mid \quad \forall X . A
$$

where $a_{i} \in \mathcal{T}$, each second-order variable X having a fixed arity n. We consider typing rules which extend those of simply-typed λ-calculus by

$$
\frac{\Gamma \vdash t: A}{\Gamma \vdash t: \forall x . A} \quad \frac{\Gamma \vdash t: A}{\Gamma \vdash t: \forall X . A} \quad \frac{\Gamma \vdash t: \forall x . A}{\Gamma \vdash t: A[a / x]} \quad \frac{\Gamma \vdash t: \forall X . A}{\Gamma \vdash t: A[B / X]}
$$

where, in the first two rules, we suppose x and X not free in Γ respectively. Note that we have three kinds of variables in $\Gamma \vdash t: A$: those declared in Γ and occurring in t (standing for λ-terms), those occurring in formulas (standing for terms in \mathcal{T}) and second-order variables (standing for formulas).

1. Show that identity can be given the type $\forall X . X \Rightarrow X$.

Solution.

$$
\frac{\frac{\overline{x: X \vdash x: X}}{\vdash \lambda x \cdot x \vdash X \Rightarrow X}}{\vdash \lambda x . x \vdash \forall X . X \Rightarrow X}
$$

2. Recall the elimination rule for \vee. How can we encode this operator into our logic?

Solution. The elimination rule for disjunction is

$$
\begin{array}{ccc}
\Gamma \vdash A \vee B & \Gamma, A \vdash X & \Gamma, B \vdash X \\
\hline \vdash X
\end{array}
$$

This suggests that we define, with X of arity 0 ,

$$
A \vee B=\forall X .(A \Rightarrow X) \Rightarrow(B \Rightarrow X) \Rightarrow X
$$

3. Similarly, provide an encoding of the operators \wedge, \perp, \neg, first and second order existential quantifications.

Solution. We define similarly:

$$
\begin{aligned}
A \wedge B & =\forall X .(A \Rightarrow B \Rightarrow X) \Rightarrow X \\
\perp & =\forall X \cdot X \\
\neg A & =A \Rightarrow \perp \\
\exists x \cdot A & =\forall X \cdot(\forall x \cdot(A(x) \Rightarrow X)) \Rightarrow X \\
\exists X \cdot A & =\forall Y \cdot(\forall X \cdot(A(X) \Rightarrow Y)) \Rightarrow Y
\end{aligned}
$$

Realizability. We write Λ for the set of λ-terms and Π for the set of stacks, which are sequences $t_{1} \cdot t_{2} \cdots t_{n}$ of λ-terms. Processes are elements (t, π) of $\Lambda \times \Pi$, often written $t \star \pi$. The reduction relation \succ between processes is given by the following two rules:

$$
\begin{gathered}
t u \star \pi \\
\succ t \star u \cdot \pi \\
\lambda x . t \star u \cdot \pi \succ t[u / x] \star \pi
\end{gathered}
$$

An element of $\mathcal{P}(\Pi)$ is called a truth value. Suppose fixed a set \Perp of processes closed under anti-reduction. We define an interpretation $\llbracket A \rrbracket \in \mathcal{P}(\Pi)$ by induction on the formula A by

$$
\llbracket A \Rightarrow B \rrbracket=\{t \cdot \pi|t \in| A \mid, \pi \in \llbracket B \rrbracket\} \quad \llbracket \forall x . A \rrbracket=\bigcup_{a \in \mathcal{T}} \llbracket A[a / x] \rrbracket \quad \llbracket \forall X . A \rrbracket=\bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V / X] \rrbracket
$$

where

$$
|A|=\{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket, t \star \pi \in \Perp\}
$$

denotes the set of realizers of the formula A. Above, we have supposed fixed an interpretation of the first- and second-order free variables (by abuse of notation, given $V \in \mathcal{P}(\Pi)$, we still write V for a variable whose interpretation is V). We write $t \Vdash A$ when $t \in|A|$ and say that t realizes A.
4. What are $\llbracket \perp \rrbracket$ and $|\perp|$?

Solution.

$$
\llbracket \perp \rrbracket=\llbracket \forall X \cdot X \rrbracket=\bigcup_{V \in \mathcal{P}(\Pi)} V=\Pi \quad|\perp|=\{t \in \Lambda \mid \forall \pi \in \Pi, t \star \pi \in \Perp\}
$$

5. Show that $|\forall X . A|=\bigcap_{V \in \mathcal{P}(\Pi)}|A[V / X]|$.

Solution. We have

$$
\begin{aligned}
|\forall X . A| & =\{t \in \Lambda \mid \forall \pi \in \llbracket \forall X . A \rrbracket, t \star \pi \in \Perp\} \\
& =\left\{t \in \Lambda \mid \forall \pi \in \bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V / X] \rrbracket, t \star \pi \in \Perp\right\} \\
& =\bigcap_{V \in \mathcal{P}(\Pi)}\{t \in \Lambda \mid \forall \pi \in \llbracket A[V / X] \rrbracket, t \star \pi \in \Perp\} \\
& =\bigcap_{V \in \mathcal{P}(\Pi)}|A[V / X]|
\end{aligned}
$$

Identity-like terms. Our goal is now to characterize the behavior of terms of type $\forall X . X \Rightarrow X$.
6. Give examples of terms which are of type $\forall X . X \Rightarrow X$.

Solution. We have the identity $\lambda x . x$, but also terms which reduce to the identity such as $(\lambda x . x)(\lambda x . x)$.
7. Show that $(\lambda x . x) \star u \cdot \pi \succ u \star \pi$.

Solution. We have $(\lambda x . x) \star u \cdot \pi \succ x[u / x] \star \pi=u \star \pi$.
A term $t \in \Lambda$ is identity-like when $t \star u \cdot \pi \succ u \star \pi$ for every $u \in \Lambda$ and $\pi \in \Pi$.
8. Show that if t is identity-like then $t \Vdash \forall X . X \Rightarrow X$.

Solution. Given an element $u \cdot \pi$ of

$$
\llbracket \forall X . X \Rightarrow X \rrbracket=\bigcup_{V \in \mathcal{P}(\Pi)}|V| \cdot V=\{u \cdot \pi|u \in| V \mid, \pi \in V, V \in \mathcal{P}(\Pi)\}
$$

we have $t \star u \cdot \pi \succ u \star \pi \in \Perp$.
We temporarily admit the adequation lemma: if $\vdash t: A$ is derivable then $t \vdash A$.
9. Show the converse to previous question, i.e. $\vdash t: \forall X . X \Rightarrow X$ implies that t is identity-like (hint: use a suitably chosen \Perp).

Solution. We take \Perp to be the closure by anti-reduction of $\{u \star \pi\}$. By the adequation lemma, we have $t \Vdash \forall X . X \Rightarrow X$. Thus $t \vdash X \Rightarrow X$ for every X. Take $\llbracket X \rrbracket=\{\pi\}$. We have $u \Vdash X$, thus $u \cdot \pi \in \llbracket X \Rightarrow X \rrbracket$, thus $t \Vdash u \cdot \pi$, i.e. $t \star u \cdot \pi \in \Perp$, i.e. $t \star u \cdot \pi \succ u \star \pi$.
10. Give an example of an identity-like term which is not the identity, and even non-typable.

Solution. $(\lambda x y . x) \Omega$.

Booleans.

11. Suppose that our signatures contains constants 0 and 1. Define a predicate $\operatorname{Bool}(x)$, which encodes the fact that x is a boolean.

Solution. We define

$$
\operatorname{Bool}(x)=\forall X . X(0) \Rightarrow X(1) \Rightarrow X(x)
$$

12. Show that $\vdash t: \operatorname{Bool}(0)$ implies $t \star u \cdot v \cdot \pi \succ t \star \pi$ (and similarly for $\vdash t: \operatorname{Bool}(1))$.

Solution. We define \Perp to be the closure under anti-reduction of $\{u \star \pi\}$ and consider the interpretation of X such that $\llbracket X(0) \rrbracket=\{\pi\}$ and $\llbracket X(x) \rrbracket=\emptyset$ for $x \neq 0$. We have $u \Vdash X(0)$ and $v \Vdash X(1)$. By the adequation lemma, we have $t \Vdash X(0) \Rightarrow X(1) \Rightarrow X(0)$, thus $t \star u \cdot v \cdot \pi \in \Perp$ which gives the result.

Other consequences of the adequation lemma.

13. Show that there is no term such that $\vdash t: \perp$.

Solution. If this was the case, we would have $t \Vdash \perp$, i.e. $t \star \pi \in \Perp$ for every $\pi \in \Pi=\llbracket \Perp \rrbracket$. This is absurd if we take $\Perp=\emptyset$.
14. Show that typable λ-terms are normalizing with respect to the call-by-name strategy.

Solution. The proposed reduction of the machine corresponds to the call-by-name evaluation of a λ-term. If we take $\Perp=\{t \star \pi \mid t \star \pi$ normalizes $\}$ we can conclude.

The adequation lemma.

15. Show that $t \Vdash A \Rightarrow B$ and $u \Vdash A$ implies $t u \Vdash B$.

Solution. Suppose $t \Vdash A \Rightarrow B$ and $u \Vdash A$. Given $\pi \in \llbracket B \rrbracket$, $t u \star \pi \succ t \star u \cdot \pi$. Since $u \in|A|$ and $\pi \in \llbracket B \rrbracket$, we have $u \cdot \pi \in \llbracket A \Rightarrow B \rrbracket$ and thus $t \star u \cdot \pi \in \Perp$ since $t \in|A \Rightarrow B|$. This $t u \star \pi$ because \Perp is closed under antireduction.
16. Show that if for every $u \in \Lambda, u \Vdash A$ implies $t[u / x] \Vdash B$, then $\lambda x . t \Vdash A \Rightarrow B$.

Solution. Suppose given an element of $\llbracket A \Rightarrow B \rrbracket$. It is of the form $u \cdot \pi$ with $u \in|A|$ and $\pi \in \llbracket B \rrbracket$. We have $\lambda x . t \star u \cdot \pi \succ t[u / x] \star \pi$ which belongs to \Perp.
17. Prove the adequation lemma: $\vdash t: A$ derivable implies $t \Vdash A$.

Solution. We proceed by induction on the proof of $\Gamma \vdash t: A$.

- Axiom:

$$
\overline{\Gamma \vdash x_{i}: A_{i}}
$$

We have to show that if $t_{i} \Vdash A_{i}$ then $t_{i} \Vdash A_{i}$, which is obvious.

- Application, this can be deduced from question 15.
- For abstraction to go through, we need to show a more general statement:
if $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: A$ is derivable and $\forall i, t_{i} \Vdash A_{i}$ then $t\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] \Vdash$ A.

This can be checked to still be valid for the two previous cases. The abstraction rule is

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x . t: A \Rightarrow B}
$$

By induction hypothesis, we have, for every $u \in A, t\left[t_{i} / x_{i}\right][u / x] \Vdash B$, we deduce that $(\lambda x . t)\left[t_{i} / x_{i}\right] \Vdash A \Rightarrow B$ by question 16.

- For first-order rules to go through, we actually need to show a stronger induction hypothesis:

If $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: A$ is derivable, with A_{1}, \ldots, A_{n} having free variables among y_{1}, \ldots, y_{m} then for every $\left(t_{i}\right)_{1 \leq i \leq n} \in \Lambda^{n}$ such that $t_{i} \Vdash A_{i}$, for every $\left(u_{i}\right)_{1 \leq i \leq m} \in \mathcal{T}^{m}$, we have $t\left[t_{i} / x_{i}\right] \Vdash A\left[u_{i} / y_{i}\right]$.
It is straightforward to show that the above cases can be adapted to this generalization.

- First-order introduction:

$$
\frac{\Gamma \vdash t: A}{\Gamma \vdash t: \forall x . A}
$$

By induction hypothesis, we have $t\left[t_{i} / x_{i}\right] \in\left|A\left[u_{i} / x_{i}\right]\right|$. Therefore,

$$
t\left[t_{i} / x_{i}\right] \in \bigcap_{t \in \mathcal{T}}\left|A[u / x]\left[u_{i} / x_{i}\right]\right|=\left|(\forall x . A)\left[u_{i} / x_{i}\right]\right|
$$

- First-order elimination:

$$
\frac{\Gamma \vdash t: \forall x . A}{\Gamma \vdash t: A[a / x]}
$$

By induction hypothesis, we have

$$
t\left[t_{i} / x_{i}\right] \in\left|\forall x . A\left[u_{i} / x_{i}\right]\right|=\bigcap_{u \in \mathcal{T}}\left|A\left[u_{i} / x_{i}, u / x\right]\right| \supseteq\left|A\left[u_{i} / x_{i}, a / x\right]\right|=\left|A[a / x]\left[u_{i} / x_{i}\right]\right|
$$

- To handle second-order quantification, we also need a similar generalization of the induction hypothesis for second order variables (we can replace any second-order variable X_{i} of arity k_{i} by any function $\left.P_{i}:\left(\mathcal{T}^{*}\right)^{k_{i}} \rightarrow \mathcal{P}(\Pi)\right)$.

Classical logic. We extend λ-terms by adding constants cc and k_{π} for every $\pi \in \Pi$ with reduction rules

$$
\mathrm{cc} \star t \cdot \pi \succ t \star \mathrm{k}_{\pi} \cdot \pi \quad \mathrm{k}_{\pi} \star t \cdot \rho \succ t \star \pi
$$

18. Show that the formula $\forall X .(X \vee \neg X)$ is realized.

Solution. We have that $\forall X .(X \vee \neg X)$ is defined as

$$
\forall X . \forall Y .(X \Rightarrow Y) \Rightarrow((X \Rightarrow \perp) \Rightarrow Y) \Rightarrow Y
$$

We consider

$$
t=\lambda l \cdot r \cdot \operatorname{cc}(\lambda k \cdot r(\lambda a \cdot k(l a)))
$$

Fix X and Y. Given $l \in|X \Rightarrow Y|, r \in|(X \Rightarrow \perp) \Rightarrow Y|$ and $\pi \in \llbracket Y \rrbracket$, we have

$$
t \star l \cdot r \cdot \pi \succ r \star \lambda a \cdot \mathrm{k}_{\pi}(l a) \cdot \pi
$$

and we can thus conclude if we manage to show

$$
\lambda a \cdot \mathrm{k}_{\pi}(l a) \Vdash X \Rightarrow \perp
$$

We conclude by anti-reduction since

$$
\lambda a \cdot \mathrm{k}_{\pi}(l a) \star a \cdot \rho \succ l a \star \pi \succ l \star a \cdot \pi
$$

which belongs to \Perp since $a \cdot \pi$ belongs to $\llbracket X \Rightarrow Y \rrbracket$.

References

[1] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197-229, 2009.

