Realizability

Samuel Mimram

7 November 2022

Second-order logic. We write \mathcal{T} for the set of terms over some fixed signature. The syntax of second-order formulas is

$$A \qquad ::= \qquad X(a_1, \dots, a_n) \quad | \quad A \Rightarrow B \quad | \quad \forall x.A \quad | \quad \forall X.A$$

where $a_i \in \mathcal{T}$, each second-order variable X having a fixed arity n. We consider typing rules which extend those of simply-typed λ -calculus by

$$\frac{\Gamma \vdash t:A}{\Gamma \vdash t:\forall x.A} \qquad \qquad \frac{\Gamma \vdash t:A}{\Gamma \vdash t:\forall X.A} \qquad \qquad \frac{\Gamma \vdash t:\forall x.A}{\Gamma \vdash t:A[a/x]} \qquad \qquad \frac{\Gamma \vdash t:\forall X.A}{\Gamma \vdash t:A[B/X]}$$

where, in the first two rules, we suppose x and X not free in Γ respectively. Note that we have three kinds of variables in $\Gamma \vdash t$: A: those declared in Γ and occurring in t (standing for λ -terms), those occurring in formulas (standing for terms in \mathcal{T}) and second-order variables (standing for formulas).

1. Show that identity can be given the type $\forall X.X \Rightarrow X$.

Solution.

$$\begin{array}{c} x:X\vdash x:X\\ \hline \lambda x.x\vdash X\Rightarrow X\\ \hline \lambda x.x\vdash X\Rightarrow X \end{array}$$

2. Recall the elimination rule for \lor . How can we encode this operator into our logic?

Solution. The elimination rule for disjunction is

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash X \qquad \Gamma, B \vdash X}{\Gamma \vdash X}$$

This suggests that we define, with X of arity 0,

$$A \lor B = \forall X. (A \Rightarrow X) \Rightarrow (B \Rightarrow X) \Rightarrow X$$

3. Similarly, provide an encoding of the operators \land , \bot , \neg , first and second order existential quantifications.

Solution. We define similarly:

$$\begin{split} A \wedge B &= \forall X. (A \Rightarrow B \Rightarrow X) \Rightarrow X \\ \bot &= \forall X. X \\ \neg A &= A \Rightarrow \bot \\ \exists x. A &= \forall X. (\forall x. (A(x) \Rightarrow X)) \Rightarrow X \\ \exists X. A &= \forall Y. (\forall X. (A(X) \Rightarrow Y)) \Rightarrow Y \end{split}$$

Realizability. We write Λ for the set of λ -terms and Π for the set of stacks, which are sequences $t_1 \cdot t_2 \cdots t_n$ of λ -terms. Processes are elements (t, π) of $\Lambda \times \Pi$, often written $t \star \pi$. The reduction relation \succ between processes is given by the following two rules:

$$tu \star \pi \succ t \star u \cdot \pi$$
$$\lambda x.t \star u \cdot \pi \succ t[u/x] \star \pi$$

An element of $\mathcal{P}(\Pi)$ is called a *truth value*. Suppose fixed a set \bot of processes closed under anti-reduction. We define an interpretation $\llbracket A \rrbracket \in \mathcal{P}(\Pi)$ by induction on the formula A by

$$\llbracket A \Rightarrow B \rrbracket = \{t \cdot \pi \mid t \in |A|, \pi \in \llbracket B \rrbracket\} \qquad \llbracket \forall x.A \rrbracket = \bigcup_{a \in \mathcal{T}} \llbracket A[a/x] \rrbracket \qquad \llbracket \forall X.A \rrbracket = \bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V/X] \rrbracket$$

where

$$|A| = \{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket, t \star \pi \in \bot L\}$$

denotes the set of *realizers* of the formula A. Above, we have supposed fixed an interpretation of the first- and second-order free variables (by abuse of notation, given $V \in \mathcal{P}(\Pi)$, we still write V for a variable whose interpretation is V). We write $t \Vdash A$ when $t \in |A|$ and say that t realizes A.

4. What are $\llbracket \bot \rrbracket$ and $\lvert \bot \rvert$?

Solution.

$$\llbracket \bot \rrbracket = \llbracket \forall X.X \rrbracket = \bigcup_{V \in \mathcal{P}(\Pi)} V = \Pi \qquad |\bot| = \{t \in \Lambda \mid \forall \pi \in \Pi, t \star \pi \in \bot \}$$

5. Show that $|\forall X.A| = \bigcap_{V \in \mathcal{P}(\Pi)} |A[V/X]|.$

Solution. We have

$$\begin{split} |\forall X.A| &= \{t \in \Lambda \mid \forall \pi \in \llbracket \forall X.A \rrbracket, t \star \pi \in \bot \} \\ &= \{t \in \Lambda \mid \forall \pi \in \bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V/X] \rrbracket, t \star \pi \in \bot \} \\ &= \bigcap_{V \in \mathcal{P}(\Pi)} \{t \in \Lambda \mid \forall \pi \in \llbracket A[V/X] \rrbracket, t \star \pi \in \bot \} \\ &= \bigcap_{V \in \mathcal{P}(\Pi)} |A[V/X]| \end{split}$$

Identity-like terms. Our goal is now to characterize the behavior of terms of type $\forall X.X \Rightarrow X$.

6. Give examples of terms which are of type $\forall X.X \Rightarrow X$.

Solution. We have the identity $\lambda x.x$, but also terms which reduce to the identity such as $(\lambda x.x)(\lambda x.x)$.

7. Show that $(\lambda x.x) \star u \cdot \pi \succ u \star \pi$.

Solution. We have $(\lambda x.x) \star u \cdot \pi \succ x[u/x] \star \pi = u \star \pi$.

- A term $t \in \Lambda$ is *identity-like* when $t \star u \cdot \pi \succ u \star \pi$ for every $u \in \Lambda$ and $\pi \in \Pi$.
 - 8. Show that if t is identity-like then $t \Vdash \forall X.X \Rightarrow X$.

Solution. Given an element $u \cdot \pi$ of

$$\llbracket \forall X.X \Rightarrow X \rrbracket = \bigcup_{V \in \mathcal{P}(\Pi)} |V| \cdot V = \{ u \cdot \pi \mid u \in |V|, \pi \in V, V \in \mathcal{P}(\Pi) \}$$

we have $t \star u \cdot \pi \succ u \star \pi \in \bot$.

We temporarily admit the *adequation lemma*: if $\vdash t : A$ is derivable then $t \Vdash A$.

9. Show the converse to previous question, i.e. $\vdash t : \forall X.X \Rightarrow X$ implies that t is identity-like (hint: use a suitably chosen \perp).

Solution. We take \perp to be the closure by anti-reduction of $\{u \star \pi\}$. By the adequation lemma, we have $t \Vdash \forall X.X \Rightarrow X$. Thus $t \vdash X \Rightarrow X$ for every X. Take $\llbracket X \rrbracket = \{\pi\}$. We have $u \Vdash X$, thus $u \cdot \pi \in \llbracket X \Rightarrow X \rrbracket$, thus $t \Vdash u \cdot \pi$, i.e. $t \star u \cdot \pi \in \bot$, i.e. $t \star u \cdot \pi \succ u \star \pi$.

10. Give an example of an identity-like term which is not the identity, and even non-typable.

Solution. $(\lambda xy.x)\Omega$.

Booleans.

11. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which encodes the fact that x is a boolean.

Solution. We define

$$Bool(x) = \forall X. X(0) \Rightarrow X(1) \Rightarrow X(x)$$

12. Show that $\vdash t$: Bool(0) implies $t \star u \cdot v \cdot \pi \succ t \star \pi$ (and similarly for $\vdash t$: Bool(1)).

Solution. We define \bot to be the closure under anti-reduction of $\{u \star \pi\}$ and consider the interpretation of X such that $\llbracket X(0) \rrbracket = \{\pi\}$ and $\llbracket X(x) \rrbracket = \emptyset$ for $x \neq 0$. We have $u \Vdash X(0)$ and $v \Vdash X(1)$. By the adequation lemma, we have $t \Vdash X(0) \Rightarrow X(1) \Rightarrow X(0)$, thus $t \star u \cdot v \cdot \pi \in \bot$ which gives the result.

Other consequences of the adequation lemma.

13. Show that there is no term such that $\vdash t : \bot$.

Solution. If this was the case, we would have $t \Vdash \bot$, i.e. $t \star \pi \in \bot$ for every $\pi \in \Pi = \llbracket \bot \rrbracket$. This is absurd if we take $\bot = \emptyset$.

14. Show that typable λ -terms are normalizing with respect to the call-by-name strategy.

Solution. The proposed reduction of the machine corresponds to the call-by-name evaluation of a λ -term. If we take $\perp = \{t \star \pi \mid t \star \pi \text{ normalizes}\}$ we can conclude.

The adequation lemma.

15. Show that $t \Vdash A \Rightarrow B$ and $u \Vdash A$ implies $tu \Vdash B$.

Solution. Suppose $t \Vdash A \Rightarrow B$ and $u \Vdash A$. Given $\pi \in \llbracket B \rrbracket$, $tu \star \pi \succ t \star u \cdot \pi$. Since $u \in |A|$ and $\pi \in \llbracket B \rrbracket$, we have $u \cdot \pi \in \llbracket A \Rightarrow B \rrbracket$ and thus $t \star u \cdot \pi \in \bot$ since $t \in |A \Rightarrow B|$. This $tu \star \pi$ because \bot is closed under antireduction.

16. Show that if for every $u \in \Lambda$, $u \Vdash A$ implies $t[u/x] \Vdash B$, then $\lambda x.t \Vdash A \Rightarrow B$.

Solution. Suppose given an element of $[A \Rightarrow B]$. It is of the form $u \cdot \pi$ with $u \in |A|$ and $\pi \in [B]$. We have $\lambda x.t \star u \cdot \pi \succ t[u/x] \star \pi$ which belongs to \bot .

17. Prove the adequation lemma: $\vdash t : A$ derivable implies $t \Vdash A$.

Solution. We proceed by induction on the proof of $\Gamma \vdash t : A$.

• Axiom:

$$\overline{\Gamma \vdash x_i : A_i}$$

We have to show that if $t_i \Vdash A_i$ then $t_i \Vdash A_i$, which is obvious.

- Application, this can be deduced from question 15.
- For abstraction to go through, we need to show a more general statement:

if $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$ is derivable and $\forall i, t_i \Vdash A_i$ then $t[t_1/x_1, \ldots, t_n/x_n] \Vdash A$.

This can be checked to still be valid for the two previous cases. The abstraction rule is

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \Rightarrow B}$$

By induction hypothesis, we have, for every $u \in A$, $t[t_i/x_i][u/x] \Vdash B$, we deduce that $(\lambda x.t)[t_i/x_i] \Vdash A \Rightarrow B$ by question 16.

• For first-order rules to go through, we actually need to show a stronger induction hypothesis:

If $x_1: A_1, \ldots, x_n: A_n \vdash t: A$ is derivable, with A_1, \ldots, A_n having free variables among y_1, \ldots, y_m then for every $(t_i)_{1 \leq i \leq n} \in \Lambda^n$ such that $t_i \Vdash A_i$, for every $(u_i)_{1 \leq i \leq m} \in \mathcal{T}^m$, we have $t[t_i/x_i] \Vdash A[u_i/y_i]$.

It is straightforward to show that the above cases can be adapted to this generalization.

- First-order introduction:

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x.A}$$

By induction hypothesis, we have $t[t_i/x_i] \in |A[u_i/x_i]|$. Therefore,

$$t[t_i/x_i] \in \bigcap_{t \in \mathcal{T}} |A[u/x][u_i/x_i]| = |(\forall x.A)[u_i/x_i]|$$

- First-order elimination:

$$\frac{\Gamma \vdash t : \forall x.A}{\Gamma \vdash t : A[a/x]}$$

By induction hypothesis, we have

$$t[t_i/x_i] \in |\forall x.A[u_i/x_i]| = \bigcap_{u \in \mathcal{T}} |A[u_i/x_i, u/x]| \supseteq |A[u_i/x_i, a/x]| = |A[a/x][u_i/x_i]|$$

• To handle second-order quantification, we also need a similar generalization of the induction hypothesis for second order variables (we can replace any second-order variable X_i of arity k_i by any function $P_i : (\mathcal{T}^*)^{k_i} \to \mathcal{P}(\Pi)$).

Classical logic. We extend λ -terms by adding constants cc and k_{π} for every $\pi \in \Pi$ with reduction rules

$$\mathbf{c}\mathbf{c} \star t \cdot \pi \succ t \star \mathbf{k}_{\pi} \cdot \pi \qquad \qquad \mathbf{k}_{\pi} \star t \cdot \rho \succ t \star \pi$$

18. Show that the formula $\forall X.(X \lor \neg X)$ is realized.

Solution. We have that $\forall X.(X \lor \neg X)$ is defined as

$$\forall X.\forall Y.(X \Rightarrow Y) \Rightarrow ((X \Rightarrow \bot) \Rightarrow Y) \Rightarrow Y$$

We consider

$$t = \lambda l.r. cc(\lambda k.r(\lambda a.k(la)))$$

Fix X and Y. Given $l \in |X \Rightarrow Y|$, $r \in |(X \Rightarrow \bot) \Rightarrow Y|$ and $\pi \in \llbracket Y \rrbracket$, we have

 $t \star l \cdot r \cdot \pi \succ r \star \lambda a. \mathbf{k}_{\pi}(la) \cdot \pi$

and we can thus conclude if we manage to show

$$\lambda a. \mathbf{k}_{\pi}(la) \Vdash X \Rightarrow \bot$$

We conclude by anti-reduction since

$$\lambda a. \mathtt{k}_{\pi}(la) \star a \cdot \rho \succ la \star \pi \succ l \star a \cdot \pi$$

which belongs to $\bot\!\!\!\!\bot$ since $a \cdot \pi$ belongs to $\llbracket X \Rightarrow Y \rrbracket$.

References

[1] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2009.