Realizability

Samuel Mimram

7 November 2022

Second-order logic. We write T for the set of terms over some fixed signature. The syntax of
second-order formulas is

A n= X(a,...,an) | A=DB | Vz.A | VXA

where a; € T, each second-order variable X having a fixed arity n. We consider typing rules which
extend those of simply-typed A-calculus by

T'Ht: A 'Ht: A I'Ht:Ve.A 'Ht:vVX.A
F+t:vx.A F-t:vX.A I'Ht: Ala/x) kt: AB/X]
where, in the first two rules, we suppose z and X not free in I" respectively. Note that we have three

kinds of variables in T' - ¢ : A: those declared in I and occurring in ¢ (standing for A-terms), those
occurring in formulas (standing for terms in 7) and second-order variables (standing for formulas).

1. Show that identity can be given the type VX.X = X.
Solution.
z: XFx: X
Flxxbk X=X
FlAahFVX.X =X

2. Recall the elimination rule for V. How can we encode this operator into our logic?

Solution. The elimination rule for disjunction is

'-AvB T,AFX TI,BFX
Tk X

This suggests that we define, with X of arity 0,

AVB=VX.(A=X)=(B=X)=X

3. Similarly, provide an encoding of the operators A, L, —, first and second order existential
quantifications.



Solution. We define similarly:

ANB=VX.(A=B=X)=X
1 =vVX.X
—A=A=1
Jr. A =VX.(Vz.(A(z) = X)) = X
X A=VY.VX.(AX)=Y)) =Y

Realizability. We write A for the set of A-terms and II for the set of stacks, which are sequences

t1 - to- -ty of Aterms. Processes are elements (¢, 7) of A x II, often written ¢ x 7. The reduction
relation > between processes is given by the following two rules:

tuxm>=txu-m

Aztxu-m - tu/z]*xm

An element of P(IT) is called a truth value. Suppose fixed a set 1L of processes closed under
anti-reduction. We define an interpretation [A] € P(II) by induction on the formula A by

[A=B]={t-n|te|A,xe[B]} [veA]l=|J[Ale/2]] [XxAl= |J [AV/X]]
a€T VeP(I)

where
[Al={te A|Vre[A],txme 1}

denotes the set of realizers of the formula A. Above, we have supposed fixed an interpretation of
the first- and second-order free variables (by abuse of notation, given V' € P(II), we still write V'
for a variable whose interpretation is V). We write ¢ IF A when t € |A| and say that ¢ realizes A.

4. What are [L] and |L|?
Solution.

[L=xXx]= |J v=0 |l ={teA|vrelltxre L}
VeP(II)

5. Show that |[VX.A| = ﬂVeP(H) |A[V/X]|.
Solution. We have

VXAl ={teA|Vre[VX.A],t+xme 1}
={teA|vre [J [A[V/X]],txme L}
VeP(In)
= [) {teA|vre A[V/X]],txme L}
VeP(I)

= () lAv/x)

VeP(II)



Identity-like terms. Our goal is now to characterize the behavior of terms of type VX. X = X.

6.

7.

Give examples of terms which are of type VX. X = X.

Solution. We have the identity Az.x, but also terms which reduce to the identity such as
(Ax.z)(Az.x).

Show that (Azx.z) *u -7 = ux.

Solution. We have (Az.x) *u -7 > z[u/x] * 7 = u* 7.

A term t € A is identity-like when t x u - m > u x 7 for every u € A and 7 € II.

8.

Show that if ¢ is identity-like then ¢ IF VX. X = X.
Solution. Given an element u - 7w of

VXX=X]= |J V- V={u-7|ue|V|reV,VePI)}
VePpP(1l)

we have txu-m>=uxm € A.

We temporarily admit the adequation lemma: if Ft: A is derivable then ¢ IF A.

9.

Show the converse to previous question, i.e. F ¢t : VX.X = X implies that ¢ is identity-like
(hint: use a suitably chosen ).

Solution. We take 1L to be the closure by anti-reduction of {ux7}. By the adequation lemma,
we have t IF VX.X = X. Thus t -+ X = X for every X. Take [X] = {n}. We have u IF X,
thus u-m € [X = X], thus t lFu -7, ie. txu-m € 1, e txu -7 > uxm.

10. Give an example of an identity-like term which is not the identity, and even non-typable.

Solution. (Azy.x)L.
Booleans.

11. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which
encodes the fact that = is a boolean.
Solution. We define

Bool(z) =VX.X(0) = X(1) = X(x)
12. Show that - ¢ : Bool(0) implies ¢t xu - v -7 > t 7 (and similarly for - ¢ : Bool(1)).

Solution. We define 1L to be the closure under anti-reduction of {u x 7} and consider the
interpretation of X such that [X(0)] = {7} and [X(x)] = 0 for z # 0. We have u IF X (0) and
v IF X (1). By the adequation lemma, we have ¢ |- X(0) = X (1) = X(0), thus txu-v-7m € I
which gives the result.



Other consequences of the adequation lemma.

13.

14.

Show that there is no term such that = ¢ : L.

Solution. If this was the case, we would have ¢t IF L, i.e. t xw € 1L for every w € IT = [L].
This is absurd if we take 1. = (.

Show that typable A-terms are normalizing with respect to the call-by-name strategy.

Solution. The proposed reduction of the machine corresponds to the call-by-name evaluation
of a A\-term. If we take 1L = {t x 7 | t x 7 normalizes} we can conclude.

The adequation lemma.

15.

16.

17.

Show that ¢ IF A = B and u I+ A implies tu I- B.

Solution. Suppose ¢t - A = B and ul- A. Given w € [B], tuxm >t *u - 7. Since u € |A]
and 7 € [B], we have u-7 € [A = B] and thus t xu -7 € 1 since t € |A = B|. This tuxm
because 1L is closed under antireduction.

Show that if for every u € A, u I+ A implies ¢t[u/x] IF B, then A\z.t IF A = B.

Solution. Suppose given an element of [A = B]. It is of the form u - 7 with v € |A| and
m € [B]. We have Az.t xu -7 > t[u/x] » m which belongs to L.

Prove the adequation lemma: F ¢ : A derivable implies ¢ I+ A.

Solution. We proceed by induction on the proof of I' - ¢ : A.

e Axiom:
Tk A
We have to show that if ¢; IF A; then ¢; I A;, which is obvious.
e Application, this can be deduced from question 15.

e For abstraction to go through, we need to show a more general statement:

ifey : Ay, .., xn 0 Ay bt Ais derivable and Vi, t; I+ A; then t[ty /z1, ..., tn/xs] IF
A.

This can be checked to still be valid for the two previous cases. The abstraction rule is

Iz:A+t:B
'kXxt: A= B

By induction hypothesis, we have, for every u € A, t[t;/x;][u/x] I+ B, we deduce that
(Ax.t)[t;/z;] F A = B by question 16.

e For first-order rules to go through, we actually need to show a stronger induction hy-
pothesis:



Ifxy: Ay, ..., Ay Ft: Ais derivable, with Ay, ..., A, having free variables
among yi, ..., Ym then for every (¢;)1<i<n € A™ such that ¢; IF A;, for every
(ui)1<i<m € T™, we have t[t;/x;] IF Alu;/y:)-

It is straightforward to show that the above cases can be adapted to this generalization.

— First-order introduction:
'kt A

F-t:Ve.A
By induction hypothesis, we have t[t;/z;] € |A[u;/z;]|. Therefore,

tti/zi] € () |Alu/a)lui/z)| = |(Va.A) ui/z)]

teT

— First-order elimination:
I't:Vz.A

'kt Ala/x]

By induction hypothesis, we have

tlti/i) € Vo Alus/ai)| = () |Alui/as,u/]| 2 |Alui/wi,a/z]| = |Ala/z)ui/z)|
u€T

e To handle second-order quantification, we also need a similar generalization of the induc-
tion hypothesis for second order variables (we can replace any second-order variable X;
of arity k; by any function P; : (T*)k — P(II)).

Classical logic. We extend A-terms by adding constants cc and k;; for every 7 € II with reduction
rules
cckxkt-m=txky-m krxt-p>=txm
18. Show that the formula VX.(X V =X) is realized.
Solution. We have that VX.(X V —=X) is defined as
VXVY.(X=Y)=(X=1)=Y)=Y

We consider
t = M.r.cc(Ak.r(Aa.k(la)))

Fix X and Y. Givenl € | X = Y|, r € |(X = 1) = Y| and 7 € [Y], we have
txl-r-m>=1rxiake(la) -7
and we can thus conclude if we manage to show
Aaky(la)lF X = L
We conclude by anti-reduction since
Aakr(la)xa-p>=laxm>=1%a-m

which belongs to L since a - 7 belongs to [X = Y7.
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