Algebras for a monad

Samuel Mimram

1 Adjunctions for a monad

A monad (T, μ, η) is an endofunctor $T : \mathcal{C} \to \mathcal{C}$ equipped with two natural transformations $\mu: T \circ T \to T$ and $\eta: \mathrm{id}_{\mathcal{C}} \to T$ such that, for every $A \in \mathcal{C}$,

$TTTA \xrightarrow{T\mu_A} TTA$			$TA \xrightarrow{T\eta_A} TTA \xleftarrow{\eta_{TA}} TA$
μ_{TA}	$\downarrow \mu_A$	and	d_{TA} μ_A d_{TA}
$TTA \xrightarrow{\mu_A} TA$			TA

An algebra for a monad (T, μ, η) on a category \mathcal{C} is a pair (A, a) with $a: TA \to A$ such that

$$\begin{array}{cccc} TTA & \xrightarrow{Ta} TA & & A & \stackrel{\eta_A}{\longrightarrow} TA \\ \mu_A \downarrow & \downarrow^a & \text{and} & & \downarrow^a \\ TA & \xrightarrow{a} A & & & A \end{array}$$

A morphism of T-algebras $f: (A, a) \to (B, b)$ is a morphism $f: A \to B$ in C such that

$$\begin{array}{ccc} TA & \xrightarrow{Tf} & TB \\ a \downarrow & & \downarrow^b \\ A & \xrightarrow{f} & B \end{array}$$

Given a category \mathcal{C} and T a monad on \mathcal{C} , we write \mathcal{C}^T for the category of T-algebras.

- 1. Show that the forgetful functor $U : Mon \to Set$ has a left adjoint. What is the induced monad T on Set? What is its category of algebras?
- 2. What are the algebras of the finite powerset monad on **Set**?
- 3. Given a right adjoint functor $U : \mathcal{D} \to \mathcal{C}$, show that the category \mathcal{D} is not always isomorphic to the category of algebras for the induced monad (hint: consider the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$).
- 4. Given a monad $T : \mathcal{C} \to \mathcal{C}$, show that the forgetful functor $\mathcal{C}^T \to \mathcal{C}$ has a left adjoint, and that the induced monad is T.
- 5. Construct the Kleisli category C_T associated to a monad. Show that the "forgetful functor" $C_T \to C$ has a left adjoint and that the induced monad is T.
- 6. [Optional] Fix a monad T on C and consider the category whose objects are triples (\mathcal{D}, F, G) with $F : C \to \mathcal{D}$ left adjoint to $G : \mathcal{D} \to C$ such that $G \circ F = T$, and whose morphisms $H : (\mathcal{D}, F, G) \to (\mathcal{D}', F', G')$ are functors $H : \mathcal{D} \to \mathcal{D}'$ such that $H \circ F = F'$ and $G' \circ H = G$. Show that the adjunctions associated to C^T and C_T are respectively terminal and initial in this category.

2 The Kleisli category as the category of free algebras

Our goal here is to show that the Kleisli category C_T associated to a monad T on C is the category of free algebras. A functor $F : C \to D$ is *full* (resp. *faithful*) when for every pair of objects A and B, the function

$$F_{A,B}: \mathcal{C}(A,B) \to \mathcal{D}(A,B)$$

is surjective (resp. injective).

7. Show that the "free algebra" functor $F : \mathcal{C}_T \to \mathcal{C}^T$ is full and faithful.

An equivalence between categories \mathcal{C} and \mathcal{D} consists in functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ such that $G \circ F \simeq \mathrm{id}_{\mathcal{C}}$ and $F \circ G \simeq \mathrm{id}_{\mathcal{D}}$.

- 8. Show that an equivalence of categories is the same as a functor $F : \mathcal{C} \to \mathcal{D}$ which is essentially surjective (every object of \mathcal{D} is isomorphic to one in the image of F) and full and faithful.
- 9. Show that the category C_T is equivalent to the full subcategory of C^T whose objects are free algebras.