
TD2 – Graphs, adjunctions, monads

Samuel Mimram

September 29, 2014

1 Graphs

1. Show that the category Cat(Gr,Set) of functors and natural transformations from the
category with two objects 0, 1 and four morphisms

id0 : 0→ 0 id1 : 1→ 1 s, t : 1→ 0

to the category Set of sets and functions defines the category of graphs, which is usually
denoted Graph.

2. Reformulate the definition of a category as a graph with some structure.

3. Explain that the category Cat(Gr2,Set) of functors from the category Gr2 with three
objects 0, 1, 2 and nine morphisms

id0 : 0→ 0 id1 : 1→ 1 id2 : 2→ 2 s1, t1 : 2→ 1 s0, t0 : 1→ 0 s, t : 2→ 0

with
s0 ◦ s1 = s0 ◦ t1 = s et t0 ◦ s1 = t0 ◦ t1 = t

defines a category of 2-graphs and morphisms of 2-graphs.

4. Reformulate the definition of 2-categories using the notion of 2-graph.

2 Adjunctions between sets

We recall that a functor F : C → D is left adjoint to a functor G : D → C if there is a natural
bijection between D(FA,B) and C(A,GB).

1. Suppose given two functions f : A → B and g : B → A between sets A and B. Show that
the two following properties are equivalent:

(i) f and g are bijections and f = g−1

(ii) ∀a ∈ A,∀b ∈ B, f(a) = b iff a = g(b)

2. Conclude that an adjunction between two discrete categories is a bijection.

3 Free monoids and categories

We write Mon for the category of monoids and morphisms of monoids.

1. Show that the forgetful functor U : Mon→ Set admits a left adjoint F : Set→Mon.

2. Show that the forgetful functor U : Cat→ Graph admits admits a left adjoint F : Graph→ Cat.

3. Show that the forgetful functor U : Top→ Set admits admits a left adjoint F : Set→ Top.

4. Show that the forgetful functor U : Top→ Set admits admits a right adjoint F : Set→ Top.

1



4 The exception monad

We write pSet for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a ∈ A, and morphisms f : (A, a)→ (B, b) are functions such that f(a) = b. Here the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : pSet→ Set which to a pointed set associates the under-
lying set.

2. Construct a functor F : Set→ pSet which is such that the sets pSet(FA,B) and Set(A,UB)
are isomorphic.

3. Show that the families of isomorphisms

ϕA,B : pSet(FA,B)→ Set(A,UB) and ψA,B : Set(A,UB)→ pSet(FA,B)

described in previous question are natural. By “ϕA,B is natural”, we mean here that for
every morphisms f : A→ A′ in Set and g : B → B′ in pSet the diagram

pSet(FA′, B)

g◦−◦Ff
��

φA′,B // Set(A′, UB)

Ug◦−◦f
��

pSet(FA,B′)
φA,B′

// Set(A,UB′)

commutes (in Set). Naturality of ψ is defined in a similar way.

4. We recall that a monad consists of an endofunctor T : C → C together with two natural
transformations µ : T ◦ T ⇒ T and η : idC ⇒ T such that the following diagrams commute:

T ◦ T ◦ T
Tµ +3

µT

��

T ◦ T
µ

��
T ◦ T

µ
+3 T

T

idT �&

ηT +3 T ◦ T
µ

��

T
Tηks

idTx�
T

Represent those diagrams using pasting diagrams in the 2-category Cat. Represent those
diagrams using string diagrams.

5. Describe a structure of monad on U ◦ F .

6. Given f : A→ B an OCaml function which might raise an unique exception e and g : B → C
a function which might raise an unique exception e′, construct a function corresponding to
the composite of f and g which might raise a unique exception e′′.

7. We write SetT the category whose objects are the objects of Set and morphisms f : A→ B
in SetT are morphisms f : A → TB in Set. Compositions of two morphisms f : A → B
and g : B → C in SetT is defined by g ◦ f = µC ◦ Tg ◦ f and identities are idA = ηA. Show
that the axioms of categories are satisfied.

8. Give an explicit description of SetT .

9. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by
a Kleisli construction?

10. Explain how the naturality condition of 3. is the usual naturality condition for ϕ seen as a
natural transformation between the functors pSet(F−,−) and Set(−, U−) from Setop×Set
to Set.



5 Terminal objects and products by adjunctions

1. Show that the category Cat has a terminal object 1.

2. Given a category C, show that the terminal functor T : C → 1 has a right (resp. left) adjoint
iff the category C admits a terminal (resp. initial) object.

3. Given a category C, describe the diagonal functor D : C → C × C and show that the
category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a
right (resp. left) adjoint.

6 Monads generated by an adjunction

1. Recall that a functor F : C → D is left adjoint to a functor G : D → C iff there exists two
natural transformations

η : idC → G ◦ F and ε : F ◦G→ idD

respectively called the unit and counit of the adjunction, such that

εF · Fη = idF and Gε · ηG = idG (1)

Describe the unit and counit corresponding the adjunctions studied in previous questions.

2. Show the above property.

3. Recall that a 2-category of categories, functors and natural transformations can be defined.
What are the vertical and horizontal compositions in this category? What is the “exchange
law” in a 2-category?

4. For every monad T : C → C, the multiplication µ can be thus seen as a 2-cell

C
T

��
C

T

66

T

>>⇓ µ C

in this 2-category. By constructing the Poincaré dual of this diagram, we thus get a repre-
sentation of the natural transformation µ using string diagrams. Similarly, give the string
diagrammatic representation of the laws defining a monad as well as the laws (1).

5. Given an adjunction (F,G, η, ε), show that the functor G◦F can be equipped with a structure
of monad.

6. What are the monads associated the adjunction whose right adjoint is the forgetful functor
from pSet/Mon/Vect/Top to Set?

7. Show that the forgetful functor U : Top→ Set also admits a right adjoint.

8. [Optional] Show that if T is a monad on a category C then the category C is in adjunction
with the category CT .



7 Monads in Rel

We define Rel as the 2-category whose 0-cells are sets, 1-cells R : A→ B are relations R ⊆ A×B,
there is a unique 2-cell α : R⇒ R′ : A→ B whenever R ⊆ R′.

1. Recall both horizontal and vertical compositions in Rel.

2. Show that a left adjoint in Rel is a function.

3. What is a monad in Rel?

8 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface

to various data or control structures, which is captured

by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all

instances of Monad should obey the following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

2. What does the List monad defined below do?

instance Monad [] where

m >>= f = concatMap f m

return x = [x]

3. A Kleisli triple (T, η, (−)∗) on a category C consists of

• a function T : Ob(C)→ Ob(C),
• a function ηA : A→ TA for every object A of C,
• a morphism f∗ : TA→ TB for every morphism f : A→ TB,

such that for every objects A, B, C and morphisms f : A→ TB and g : B → TC,

η∗A = idTA f∗ ◦ ηA = f g∗ ◦ f∗ = (g∗ ◦ f)∗

Show that Kleisli triples are in bijection with monads on C.

http://www.haskell.org/haskellwiki/Monad

	Graphs
	Adjunctions between sets
	Free monoids and categories
	The exception monad
	Terminal objects and products by adjunctions
	Monads generated by an adjunction
	Monads in Rel
	Monads in Haskell

