TD2 – Graphs, adjunctions, monads

Samuel Mimram

September 29, 2014

1 Graphs

1. Show that the category **Cat**(**Gr**, **Set**) of functors and natural transformations from the category with two objects 0, 1 and four morphisms

 $\operatorname{id}_0: 0 \to 0 \qquad \operatorname{id}_1: 1 \to 1 \qquad s, t: 1 \to 0$

to the category **Set** of sets and functions defines the category of graphs, which is usually denoted **Graph**.

- 2. Reformulate the definition of a category as a graph with some structure.
- 3. Explain that the category $Cat(Gr_2, Set)$ of functors from the category Gr_2 with three objects 0, 1, 2 and nine morphisms

$$\label{eq:constraint} \begin{split} \mathrm{id}_0: 0 \to 0 \qquad \mathrm{id}_1: 1 \to 1 \qquad \mathrm{id}_2: 2 \to 2 \qquad s_1, t_1: 2 \to 1 \qquad s_0, t_0: 1 \to 0 \qquad s, t: 2 \to 0 \end{split}$$
 with

$$s_0 \circ s_1 = s_0 \circ t_1 = s$$
 et $t_0 \circ s_1 = t_0 \circ t_1 = t$

defines a category of 2-graphs and morphisms of 2-graphs.

4. Reformulate the definition of 2-categories using the notion of 2-graph.

2 Adjunctions between sets

We recall that a functor $F : \mathcal{C} \to \mathcal{D}$ is *left adjoint* to a functor $G : \mathcal{D} \to \mathcal{C}$ if there is a natural bijection between $\mathcal{D}(FA, B)$ and $\mathcal{C}(A, GB)$.

- 1. Suppose given two functions $f : A \to B$ and $g : B \to A$ between sets A and B. Show that the two following properties are equivalent:
 - (i) f and g are bijections and $f = g^{-1}$
 - (ii) $\forall a \in A, \forall b \in B, \quad f(a) = b \quad \text{iff} \quad a = g(b)$
- 2. Conclude that an adjunction between two discrete categories is a bijection.

3 Free monoids and categories

We write **Mon** for the category of monoids and morphisms of monoids.

- 1. Show that the forgetful functor $U: \mathbf{Mon} \to \mathbf{Set}$ admits a left adjoint $F: \mathbf{Set} \to \mathbf{Mon}$.
- 2. Show that the forgetful functor $U : \mathbf{Cat} \to \mathbf{Graph}$ admits admits a left adjoint $F : \mathbf{Graph} \to \mathbf{Cat}$.
- 3. Show that the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$ admits a left adjoint $F : \mathbf{Set} \to \mathbf{Top}$.
- 4. Show that the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$ admits admits a right adjoint $F : \mathbf{Set} \to \mathbf{Top}$.

4 The exception monad

We write **pSet** for the category whose objects are *pointed sets*, i.e. pairs (A, a) where A is a set and $a \in A$, and morphisms $f : (A, a) \to (B, b)$ are functions such that f(a) = b. Here the distinguished element of the pointed set will be seen as a particular value indicating an error or an exception.

- 1. Describe the *forgetful functor* $U : \mathbf{pSet} \to \mathbf{Set}$ which to a pointed set associates the underlying set.
- 2. Construct a functor $F : \mathbf{Set} \to \mathbf{pSet}$ which is such that the sets $\mathbf{pSet}(FA, B)$ and $\mathbf{Set}(A, UB)$ are isomorphic.
- 3. Show that the families of isomorphisms

 $\varphi_{A,B}$: **pSet**(*FA*, *B*) \rightarrow **Set**(*A*, *UB*) and $\psi_{A,B}$: **Set**(*A*, *UB*) \rightarrow **pSet**(*FA*, *B*)

described in previous question are natural. By " $\varphi_{A,B}$ is *natural*", we mean here that for every morphisms $f: A \to A'$ in **Set** and $g: B \to B'$ in **pSet** the diagram

$$\begin{array}{c|c} \mathbf{pSet}(FA',B) \xrightarrow{\phi_{A',B}} \mathbf{Set}(A',UB) \\ g \circ - \circ Ff & & & \downarrow Ug \circ - \circ f \\ \mathbf{pSet}(FA,B') \xrightarrow{\phi_{A,B'}} \mathbf{Set}(A,UB') \end{array}$$

commutes (in **Set**). Naturality of ψ is defined in a similar way.

4. We recall that a monad consists of an endofunctor $T : \mathcal{C} \to \mathcal{C}$ together with two natural transformations $\mu : T \circ T \Rightarrow T$ and $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow T$ such that the following diagrams commute:

$$\begin{array}{cccc} T \circ T \circ T \xrightarrow{T\mu} T \circ T & T & T \xrightarrow{\eta_T} T \circ T \xrightarrow{T\eta} T \\ \mu_T & & & \mu_T \\ T \circ T \xrightarrow{\mu} T & & T \end{array}$$

Represent those diagrams using pasting diagrams in the 2-category **Cat**. Represent those diagrams using string diagrams.

- 5. Describe a structure of monad on $U \circ F$.
- 6. Given $f: A \to B$ an OCaml function which might raise an unique exception e and $g: B \to C$ a function which might raise an unique exception e', construct a function corresponding to the composite of f and g which might raise a unique exception e''.
- 7. We write \mathbf{Set}_T the category whose objects are the objects of \mathbf{Set} and morphisms $f: A \to B$ in \mathbf{Set}_T are morphisms $f: A \to TB$ in \mathbf{Set} . Compositions of two morphisms $f: A \to B$ and $g: B \to C$ in \mathbf{Set}_T is defined by $g \circ f = \mu_C \circ Tg \circ f$ and identities are $\mathrm{id}_A = \eta_A$. Show that the axioms of categories are satisfied.
- 8. Give an explicit description of \mathbf{Set}_T .
- 9. A *non-deterministic function* is a function that might return a set of values instead of a single value. How could we could we similarly define a category of non-deterministic functions by a Kleisli construction?
- 10. Explain how the naturality condition of 3. is the usual naturality condition for φ seen as a natural transformation between the functors $\mathbf{pSet}(F-, -)$ and $\mathbf{Set}(-, U-)$ from $\mathbf{Set}^{\mathrm{op}} \times \mathbf{Set}$ to \mathbf{Set} .

5 Terminal objects and products by adjunctions

- 1. Show that the category **Cat** has a terminal object **1**.
- 2. Given a category \mathcal{C} , show that the terminal functor $T : \mathcal{C} \to \mathbf{1}$ has a right (resp. left) adjoint iff the category \mathcal{C} admits a terminal (resp. initial) object.
- 3. Given a category C, describe the *diagonal functor* $D : C \to C \times C$ and show that the category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a right (resp. left) adjoint.

6 Monads generated by an adjunction

1. Recall that a functor $F : \mathcal{C} \to \mathcal{D}$ is left adjoint to a functor $G : \mathcal{D} \to \mathcal{C}$ iff there exists two natural transformations

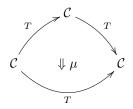
$$\eta : \mathrm{id}_{\mathcal{C}} \to G \circ F \quad \text{and} \quad \varepsilon : F \circ G \to \mathrm{id}_{\mathcal{D}}$$

respectively called the *unit* and *counit* of the adjunction, such that

$$\varepsilon_F \cdot F\eta = \mathrm{id}_F$$
 and $G\varepsilon \cdot \eta_G = \mathrm{id}_G$ (1)

Describe the unit and counit corresponding the adjunctions studied in previous questions.

- 2. Show the above property.
- 3. Recall that a 2-category of categories, functors and natural transformations can be defined. What are the vertical and horizontal compositions in this category? What is the "exchange law" in a 2-category?
- 4. For every monad $T: \mathcal{C} \to \mathcal{C}$, the multiplication μ can be thus seen as a 2-cell



in this 2-category. By constructing the Poincaré dual of this diagram, we thus get a representation of the natural transformation μ using *string diagrams*. Similarly, give the string diagrammatic representation of the laws defining a monad as well as the laws (1).

- 5. Given an adjunction $(F, G, \eta, \varepsilon)$, show that the functor $G \circ F$ can be equipped with a structure of monad.
- 6. What are the monads associated the adjunction whose right adjoint is the forgetful functor from pSet/Mon/Vect/Top to Set?
- 7. Show that the forgetful functor $U: \mathbf{Top} \to \mathbf{Set}$ also admits a right adjoint.
- 8. [Optional] Show that if T is a monad on a category C then the category C is in adjunction with the category C_T .

7 Monads in Rel

We define **Rel** as the 2-category whose 0-cells are sets, 1-cells $R : A \to B$ are relations $R \subseteq A \times B$, there is a unique 2-cell $\alpha : R \Rightarrow R' : A \to B$ whenever $R \subseteq R'$.

- 1. Recall both horizontal and vertical compositions in Rel.
- 2. Show that a left adjoint in **Rel** is a function.
- 3. What is a monad in **Rel**?

8 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

```
Monads can be viewed as a standard programming interface
to various data or control structures, which is captured
by the Monad class. All common monads are members of it:
```

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b
 return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the following equations:

return a >>= k = k a m >>= return = m m >>= $(x \rightarrow k x \rightarrow b) = (m \rightarrow b) = h$

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where return = Just Nothing >>= f = Nothing (Just x) >>= f = f x

2. What does the List monad defined below do?

instance Monad [] where m >>= f = concatMap f m return x = [x]

- 3. A Kleisli triple $(T, \eta, (-)^*)$ on a category \mathcal{C} consists of
 - a function $T : \operatorname{Ob}(\mathcal{C}) \to \operatorname{Ob}(\mathcal{C})$,
 - a function $\eta_A : A \to TA$ for every object A of \mathcal{C} ,
 - a morphism $f^*: TA \to TB$ for every morphism $f: A \to TB$,

such that for every objects A, B, C and morphisms $f: A \to TB$ and $g: B \to TC$,

$$\eta_A^* = \mathrm{id}_{TA} \qquad \qquad f^* \circ \eta_A = f \qquad \qquad g^* \circ f^* = (g^* \circ f)^*$$

Show that Kleisli triples are in bijection with monads on \mathcal{C} .