TD2 — Graphs, adjunctions, monads

Samuel Mimram

September 29, 2014

1 Graphs

1. Show that the category Cat(Gr,Set) of functors and natural transformations from the
category with two objects 0, 1 and four morphisms

idg: 0—=0 idy:1—=1 5,t:1 =0

to the category Set of sets and functions defines the category of graphs, which is usually
denoted Graph.

2. Reformulate the definition of a category as a graph with some structure.

3. Explain that the category Cat(Grs,Set) of functors from the category Gry with three
objects 0, 1, 2 and nine morphisms

idg:0—0 idi:1—>1 idy : 2 —2 s1,t1:2—1 S(],t()I].—)O s,t:2—0

with
890081 =8got; =5 et toposy =tgot; =1t

defines a category of 2-graphs and morphisms of 2-graphs.

4. Reformulate the definition of 2-categories using the notion of 2-graph.

2 Adjunctions between sets

We recall that a functor F' : C — D is left adjoint to a functor G : D — C if there is a natural
bijection between D(F'A, B) and C(A,GB).

1. Suppose given two functions f : A — B and g : B — A between sets A and B. Show that
the two following properties are equivalent:

(i) f and g are bijections and f = g~*
(i) Va € A,Vbe B, f(a)=b iff a=g(b)

2. Conclude that an adjunction between two discrete categories is a bijection.

3 Free monoids and categories
We write Mon for the category of monoids and morphisms of monoids.
1. Show that the forgetful functor U : Mon — Set admits a left adjoint F': Set — Mon.
2. Show that the forgetful functor U : Cat — Graph admits admits a left adjoint F' : Graph — Cat.
3. Show that the forgetful functor U : Top — Set admits admits a left adjoint F' : Set — Top.
4. Show that the forgetful functor U : Top — Set admits admits a right adjoint F' : Set — Top.



4

The exception monad

We write pSet for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a € A, and morphisms f : (A,a) — (B, b) are functions such that f(a) = b. Here the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1.

10.

Describe the forgetful functor U : pSet — Set which to a pointed set associates the under-
lying set.

. Construct a functor F' : Set — pSet which is such that the sets pSet(F A, B) and Set(A, UB)

are isomorphic.
Show that the families of isomorphisms

va,p:pSet(FA, B) — Set(A,UB) and g4 p:Set(4A,UB) — pSet(FA,B)
described in previous question are natural. By “pa p is natural”, we mean here that for

every morphisms f: A — A’ in Set and g : B — B’ in pSet the diagram

b ar
pSet(FA’, B) —% Set(A’,UB)

oot |vso-os

pSet(FA, B') e Set(A,UB’)

A,B’

commutes (in Set). Naturality of ¢ is defined in a similar way.

We recall that a monad consists of an endofunctor T : C — C together with two natural
transformations p: T oT = T and 7 : id¢ = T such that the following diagrams commute:

Tu nT Tn
ToToT=—=ToT T——ToT <—T
HTH/ ﬂ“ Mﬂ/
idT idT

Represent those diagrams using pasting diagrams in the 2-category Cat. Represent those
diagrams using string diagrams.

Describe a structure of monad on U o F.

Given f : A — B an OCaml function which might raise an unique exception e and g : B — C
a function which might raise an unique exception e’, construct a function corresponding to
the composite of f and g which might raise a unique exception e”.

We write Setr the category whose objects are the objects of Set and morphisms f: A — B
in Setr are morphisms f : A — T'B in Set. Compositions of two morphisms f : A — B
and g : B — C'in Setr is defined by go f = uc oTgo f and identities are id4 = n4. Show
that the axioms of categories are satisfied.

Give an explicit description of Setr.

A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by
a Kleisli construction?

Explain how the naturality condition of 3. is the usual naturality condition for ¢ seen as a
natural transformation between the functors pSet(F—, —) and Set(—, U—) from Set°” x Set
to Set.



Terminal objects and products by adjunctions
. Show that the category Cat has a terminal object 1.

. Given a category C, show that the terminal functor T': C — 1 has a right (resp. left) adjoint
iff the category C admits a terminal (resp. initial) object.

. Given a category C, describe the diagonal functor D : C — C x C and show that the
category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a
right (resp. left) adjoint.

Monads generated by an adjunction

. Recall that a functor F' : C — D is left adjoint to a functor G : D — C iff there exists two
natural transformations

n:ide > GoF and ¢e:FoG —idp
respectively called the unit and counit of the adjunction, such that
ep-Fn=idr and Ge-ng=idg (1)
Describe the unit and counit corresponding the adjunctions studied in previous questions.

. Show the above property.

. Recall that a 2-category of categories, functors and natural transformations can be defined.
What are the vertical and horizontal compositions in this category? What is the “exchange
law” in a 2-category?

. For every monad T : C — C, the multiplication p can be thus seen as a 2-cell

in this 2-category. By constructing the Poincaré dual of this diagram, we thus get a repre-
sentation of the natural transformation p using string diagrams. Similarly, give the string
diagrammatic representation of the laws defining a monad as well as the laws (1).

. Given an adjunction (F, G, 7, €), show that the functor GoF can be equipped with a structure
of monad.

. What are the monads associated the adjunction whose right adjoint is the forgetful functor
from pSet/Mon/Vect/Top to Set?

. Show that the forgetful functor U : Top — Set also admits a right adjoint.

. [Optional] Show that if 7" is a monad on a category C then the category C is in adjunction
with the category Cr.



7 Monads in Rel

We define Rel as the 2-category whose 0-cells are sets, 1-cells R : A — B are relations R C A x B,
there is a unique 2-cell & : R = R’ : A — B whenever R C R’.

1. Recall both horizontal and vertical compositions in Rel.
2. Show that a left adjoint in Rel is a function.

3. What is a monad in Rel?

8 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface
to various data or control structures, which is captured
by the Monad class. All common monads are members of it:

class Monad m where
(>>=) ::ma->(a->mb) >mb
return :: a -> m a

In addition to implementing the class functions, all
instances of Monad should obey the following equations:

return a >>=k = Kk a
m >>= return = m
m>= (\x >k x>>=h) = (m>=2%k) >>=nh

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
(Just x) >>=f = f x

2. What does the List monad defined below do?

instance Monad [] where
m >>= f = concatMap f m
return x = [x]

3. A Kleisli triple (T, n,(—)*) on a category C consists of

e a function T : Ob(C) — Ob(C),
e a function n4 : A — T A for every object A of C,
e a morphism f*:TA — TB for every morphism f: A — TB,

such that for every objects A, B, C and morphisms f: A —-TBand g: B — TC,

Uz:idTA f*OUA:f g*Of*Z(g*Of)*

Show that Kleisli triples are in bijection with monads on C.


http://www.haskell.org/haskellwiki/Monad

	Graphs
	Adjunctions between sets
	Free monoids and categories
	The exception monad
	Terminal objects and products by adjunctions
	Monads generated by an adjunction
	Monads in Rel
	Monads in Haskell

