TD1 – Cartesian categories

Samuel Mimram samuel.mimram@lix.polytechnique.fr

21 September 2015

1 Categories and functors

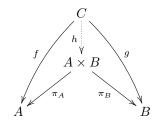
- 1. Recall the definition of *category* and provide some examples (e.g. Set, Top, Vect, Grp).
- 2. Recall the definition of a *functor* and provide some examples.
- 3. Define the category **Cat** of categories and functors.

2 Cartesian categories

Suppose fixed a category C. A *cartesian product* of two objects A and B is given by an object $A \times B$ together with two morphisms

$$\pi_1: A \times B \to A$$
 and $\pi_2: A \times B \to B$

such that for every object C and morphisms $f: C \to A$ and $g: C \to B$, there exists a unique morphism $h: C \to A \times B$ making the diagram



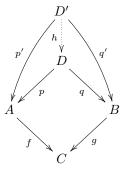
commute. We also recall that a *terminal object* in a category is an object 1 such that for every object A there exists a unique morphism $f_A : A \to 1$. A category is *cartesian* when it has finite products, i.e. has a terminal object and every pair of objects admits a product.

- 1. Suppose that (E, \leq) is a poset. We associate to it category whose objects are elements of E and such that there exists a unique morphism between object a and b iff $a \leq b$. What is a terminal object and a product in this category?
- 2. Show that the category **Set** of sets and functions is cartesian.
- 3. Show that two terminal objects in a category are necessarily isomorphic.
- 4. Similarly, show that the cartesian product of two objects is defined up to isomorphism.
- 5. How could you show previous question using question 3.?
- 6. Show that for every object A of a cartesian category, the objects $1 \times A$, A and $A \times 1$ are isomorphic.
- 7. Show that for every objects A and B, $A \times B$ and $B \times A$ are isomorphic.
- 8. Show that for every objects A, B and C, $(A \times B) \times C$ and $A \times (B \times C)$ are isomorphic.
- 9. The notion of *coproduct* is dual to the notion of product, and the notion of *initial object* is dual to terminal object. Show that **Set** has all coproducts and an initial object (i.e. it is a co-cartesian category).

- 10. Show that the category **Rel** of sets and relations is cartesian.
- 11. We write **Vect** for the category of k-vector spaces (where k is a fixed field) and linear functions. Show that this category is cartesian. Given a basis for A and B, describe a basis for $A \times B$.
- 12. Show that the category **Cat** is cartesian.

3 Pullbacks

Given two morphisms $f : A \to C$ and $g : B \to C$ with the same target, a *pullback* is given by an object D (sometimes abusively noted $A \times_C B$) together with two morphisms $p : D \to A$ and $q : D \to B$ such that $f \circ p = g \circ q$, and for every pair of morphisms $p' : D' \to A$ and $q' : D' \to B$ (with the same source) such that $f \circ p' = g \circ q'$, there exists a unique morphism $h : D' \to D$ such that $p \circ h = p'$ and $q \circ h = q'$.



- 1. What is a pullback in the case where C is the terminal object?
- 2. What is a pullback in **Set**?

4 Dual notions

A coproduct in a category \mathcal{C} is a product in \mathcal{C}^{op} .

- 1. What is a coproduct in Set? In Rel? In Top? In Vect?
- A *pushout* in a category C is a pullback in C^{op} .
 - 2. What is a pushout in **Set**? In **Top**?

5 (Co)monoids in cartesian categories

- 1. Generalize the definition of *monoid* to any cartesian category (a monoid in **Set** should be a monoid in the usual sense). When is a monoid commutative?
- 2. Generalize the notion of morphism of monoid.
- 3. A comonoid in C is a monoid in C^{op} . Make explicit the notion of comonoid.
- 4. Show that in a cartesian category every object is a comonoid.
- 5. Given a category C, shown that the category of commutative comonoids and morphisms of comonoids in C is cartesian.

6 Representable graphs

1. Show that the category **Cat**(**Gr**, **Set**) of functors and natural transformations from the category with two objects 0, 1 and four morphisms

 $\operatorname{id}_0: 0 \to 0 \qquad \operatorname{id}_1: 1 \to 1 \qquad s, t: 1 \to 0$

to the category **Set** of sets and functions defines the category of graphs, which is usually denoted **Graph**.

- 2. Reformulate the definition of a category as a graph with some structure.
- 3. Explain that the category $Cat(Gr_2, Set)$ of functors from the category Gr_2 with three objects 0, 1, 2 and nine morphisms

 $id_0: 0 \to 0$ $id_1: 1 \to 1$ $id_2: 2 \to 2$ $s_1, t_1: 2 \to 1$ $s_0, t_0: 1 \to 0$ $s, t: 2 \to 0$

with

 $s_0 \circ s_1 = s_0 \circ t_1 = s$ et $t_0 \circ s_1 = t_0 \circ t_1 = t$

defines a category of 2-graphs and morphisms of 2-graphs.

4. Reformulate the definition of 2-categories using the notion of 2-graph.

Given a category \mathcal{C} , the category of *presheaves* $\hat{\mathcal{C}}$ is the category of functors $\mathcal{C}^{\text{op}} \to \mathbf{Set}$ and natural transformations between them.

- 5. Define a graph Y_0 such that given a graph G, the vertices of G are in bijection with graph morphisms from Y_0 to G. Similarly, define a graph Y_1 such that we have a bijection between edges of G and graph morphisms from Y_1 to G.
- 6. Given a category \mathcal{C} , we define the Yoneda functor $Y : \mathcal{C} \to \hat{\mathcal{C}}$ by $YAB = \mathcal{C}(B, A)$ for objects $A, B \in \mathcal{C}$. Complete the definition of Y.
- 7. In the case of \mathbf{Gr} , what are the graphs obtained as the image of the two objects? A presheaf of the form YA for some object A is called a *representable* presheaf.
- 8. Yoneda lemma: show that for any category \mathcal{C} , presheaf $P \in \hat{\mathcal{C}}$, and object $A \in \mathcal{C}$, we have $P(A) \cong \hat{\mathcal{C}}(YA, P)$.
- 9. Show that the Yoneda embedding is full and faithful.