
TD3 – Adjunctions and monads

Samuel Mimram

15 octobre 2009

1 Kleisli categories

1. Given a monad (T, µ, η) on a category C, we write CT for the Kleisli category associated to the
monad: its objects are the objects of C and morphisms f : A→ B of CT are the morphisms
f : A→ TB of C, the composition of two morphisms f : A → TB and g : B → TC being
given by g ◦ f = µC ◦ Tg ◦ f and identities by idA = ηA. Show that the axioms of categories
are satisfied.

2. Give a direct description of the Kleisli category associated to the exception monad.

2 Non-determinism monad

1. We write Mon for the category of monoids. Describe the functor U : Mon→ Set which
sends a monoid to its underlying set. The functor U is often called a forgetful functor because
it “forgets” about the structure of monoid on a set.

2. Give an explicit description of the monoid freely generated by a set.

3. Construct a functor F : Set→Mon which sends a set on the monoid it freely generates.

4. Show that F is left adjoint to U .

5. Define a structure of monad on the functor U ◦ F : Set→ Set.

6. Similarly define a monad T : Set → Set from an adjunction between Set and the cate-
gory CMon of commutative monoids.

7. Describe the Kleisli category SetT and explain why we can see its morphisms as non-
deterministic programs.

8. Other variant: construct similarly the powerset monad on Set which to every set associates
the set of its subsets, and give a direct description of the associated Kleisli category.

3 Free category on a graph

A graph is defined as a diagram V E
soo
t

oo in Set.

1. Define the notion of morphism of graph. We write Graph for the category thus constructed.

2. Define the forgetful functor U : Cat→ Graph.

3. Show that this functor F : Graph→ Cat admits a left adjoint.

4 Terminal objects and products by adjunctions

1. Show that the category Cat has a terminal object 1.

2. Given a category C, describe the terminal functor T : Cat→ 1.

3. Given a category C, show that the terminal functor T : C → 1 has a right (resp. left) adjoint
iff the category C admits a terminal (resp. initial) object.

4. Given a category C, describe the diagonal functor D : C → C × C and show that the
category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a
right (resp. left) adjoint.

1



5 Monads generated by an adjunction

1. Recall that a functor F : C → D is left adjoint to a functor G : D → C iff there exists two
natural transformations

η : idC → G ◦ F and ε : F ◦G→ idD

respectively called the unit and counit of the adjunction, such that

εF · Fη = idF and Gε · ηG = idG (1)

Describe the unit and counit corresponding the adjunctions studied in previous questions.

2. Recall that a 2-category of categories, functors and natural transformations can be defined.
What are the vertical and horizontal compositions in this category? What is the “exchange
law” in a 2-category?

3. For every monad T : C → C, the multiplication µ can be thus seen as a 2-cell

C
T

��
C

T

66

T

>>⇓ µ C

in this 2-category. By constructing the Poincaré dual of this diagram, we thus get a repre-
sentation of the natural transformation µ using string diagrams. Similarly, give the string
diagrammatic representation of the laws defining a monad as well as the laws (1).

4. Given an adjunction (F,G, η, ε), show that the functor G◦F can be equipped with a structure
of monad.

5. [Optional] Show the property mentioned in question 1.

6. [Optional] Show that if T is a monad on a category C then the category C is in adjunction
with the category CT .

6 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface

to various data or control structures, which is captured

by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all

instances of Monad should obey the following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. Show that this notion of monad is equivalent to the categorical definition of monads.

2. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

3. What does the List monad defined below do?

instance Monad [] where

m >>= f = concatMap f m

return x = [x]

2

http://www.haskell.org/haskellwiki/Monad

	Kleisli categories
	Non-determinism monad
	Free category on a graph
	Terminal objects and products by adjunctions
	Monads generated by an adjunction
	Monads in Haskell

