TD7 – Monoidal Theories

Samuel Mimram

17 January 2013

1 Monoidal categories

A monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ is a category \mathcal{C} equipped with a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, an object $I \in \mathcal{C}$, and three natural bijections of components

 $\alpha_{A,B,C}: (A \otimes B) \otimes C \to A \otimes (B \otimes C) \qquad \qquad \lambda_A: I \otimes A \to A \qquad \qquad \rho_A: A \otimes I \to A$

such that the diagrams

and

commute.

A braided monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho, \gamma)$ is a monoidal category equipped with a natural bijection γ of components

$$\gamma_{A,B}: A \otimes B \to B \otimes A$$

such that suitable diagrams commute. A symmetric monoidal category is a braided monoidal category such that $\gamma_{B,A} \circ \gamma_{A,B} = id_{A \otimes B}$ for every objects A and B.

- 1. Show that every cartesian category \mathcal{C} can be equipped with a structure of symmetric monoidal category.
- 2. We write **Vect** for the category of \Bbbk -vector spaces (where \Bbbk is a fixed field) and linear functions. Show that this category is cartesian.
- 3. Given a basis for A and B, describe a basis for $A \times B$.
- 4. Show that the forgetful functor $U : \mathbf{Vect} \to \mathbf{Set}$ admits a left adjoint $F : \mathbf{Set} \to \mathbf{Vect}$.
- 5. Given vector spaces A, B and C, we write Bilin(A, B; C) for the set of bilinear applications from $A \times B$ to C. Show that there exists a vector space, written $A \otimes B$ such that we have a (natural) bijection

 $Bilin(A, B; C) \cong \mathbf{Vect}(A \otimes B; C)$

It can be helpful to write $A \otimes B$ as a quotient of the vector space $F(U(A) \times U(B))$.

- 6. Given a basis for A and B, describe a basis for $A \otimes B$.
- 7. Define a notion of *monoid* in a monoidal category (so that a monoid in the cartesian category **Set** corresponds to the usual notion). Define similarly morphisms of monoids.
- 8. What is a monoid in $(Cat, \times, 1)$?
- 9. Show that a monoidal category is cartesian (with tensor as product) if and only if every object is equipped with a natural structure of comonoid.

2 Monoidal theories

In the following, we will assume that all the monoidal categories we consider are *strict* (i.e. α , λ and ρ) are identities. It can namely be shown that every monoidal category is equivalent to a strict one. A *monoidal functor* between two monoidal categories is a functor commuting to the tensor and units.

We write Δ for the category whose objects are strictly positive natural numbers $n \in \mathbb{N}$, and morphisms $f: m \to n$ are (weakly) increasing functions $f: [m] \to [n]$ where $[n] = \{0, \ldots, n-1\}$.

- 1. Equip Δ with a structure of (strict) monoidal category, given by addition on objects.
- 2. Show that the object 1 is terminal in this category.
- 3. Show that the object 1 is canonically equipped with a structure of monoid.
- 4. Recall how to show that $\mathbb{N} \times \mathbb{N}/2\mathbb{N}$ admits the presentation $\langle a, b \mid ba = ab, bb = 1 \rangle$ using rewriting theory.
- 5. Show that Δ is the free monoidal category containing a monoid by showing that morphisms are in bijection with canonical forms of composites of morphisms generated by the operations of monoids. In which sense can this be thought as providing a presentation for Δ ?
- 6. Show that, given a monoidal category \mathcal{C} , monoidal functors $\Delta \to \mathcal{C}$ are in bijection with monoids in \mathcal{C} .
- 7. Which category should play the role of Δ if we were interested in the theory of commutative monoids in a symmetric monoidal category?
- 8. Which theory do we obtain if we restrict the morphisms to injective (resp. surjective) functions?
- 9. What is the Lawvere theory of commutative monoids?

3 Simplicial sets

We write Δ_+ for the category with \mathbb{N} as objects and whose morphisms $f: m \to n$ are weakly increasing functions $f: [m+1] \to [n+1]$.

- 1. Show that Δ_+ is isomorphic to a full subcategory of Δ .
- 2. Show that Δ_+ is generated, as a category, by the morphisms $\delta_i^n : [n] \to [n+1]$ and $\varepsilon_i^n : [n+2] \to [n+1]$ (with $0 \le i \le n$) defined by

$$\delta_i^m(k) = \begin{cases} k & \text{si } k < i \\ k+1 & \text{sinon} \end{cases} \quad \text{and} \quad \varepsilon_i^n = \begin{cases} k & \text{si } k \le i \\ k-1 & \text{sinon} \end{cases}$$

How are these generators linked with the presentation given in previous section?

3. Find out the right members of the following equations satisfied by those morphisms:

$$\delta_j^{n+1} \circ \delta_i^n = ? \qquad \varepsilon_j^{n+1} \circ \varepsilon_i^{n+2} = ? \qquad \varepsilon_j^{n+1} \circ \delta_i^{n+1} = ? \tag{1}$$

- 4. Deduce a presentation of Δ_+ as a category.
- 5. The standard n-simplex Δ_n is the subspace of the euclidian space \mathbb{R}^n whose points are

$$\Delta_n = \{ (x_1, \dots, x_n) \mid x_i \ge 0 \quad \text{and} \quad \sum_i x_i = 1 \}$$

Provide a geometrical interpretation of functors $\phi : \Delta^{\text{op}} \to \mathbf{Set}$, which are called *simplicial sets*, by considering elements of $\phi(n)$ as standard *n*-simplices and morphisms $\phi(\varepsilon_i^n)$ as describing faces. What is the geometrical interpretation of $\phi(\delta_i^n)$? What is the geometrical interpretation of the above equations?

6. Give a description as simplicial sets of an empty square, a filled square, a (empty or filled) cube, a torus, a Möbius strip, etc.