Distributive laws between monads

Samuel Mimram

A distributive law between two monads (S, η^S, μ^S) and (T, η^T, μ^T) on category C is a natural transformation

$$\lambda \quad : \quad S \circ T \quad \Rightarrow \quad T \circ S$$

such that the following diagrams commute

- 1. Can we always compose monads?
- 2. Draw those diagrams as string diagrams in the 2-category Cat.
- 3. Draw the laws for monads as string diagrams.
- 4. Show that the distributive law λ induces a structure of monad on the functor $T \circ S$.
- 5. Consider on **Set** the monads S of free monoid and T of free abelian group. Construct a distributive law $\lambda : ST \Rightarrow TS$ so that the composite monad is the monad of free ring.
- 6. How can we compose three monads with distributive laws?

Suppose given two monads S and T as above. We write $U^S : \mathcal{C}^S \to \mathcal{C}$ for the forgetful functor from the category of algebras. A *lift* of the monad T to \mathcal{C}^S is a monad $(\tilde{T}, \tilde{\eta}^T, \tilde{\mu}^T)$ such that

$$U^S \tilde{T} = T U^S \qquad \qquad U^S \tilde{\eta}^T = \eta^T U^S \qquad \qquad U^S \tilde{\mu}^T = \mu^T U^S$$

- 7. Show that distributive laws between S and T correspond to lifts of T to C^S (hint: for liftto-distributive-law direction use the fact that U^S has a left adjoint such that the induced monad is S and notice that the first equality above can be seen as an invertible natural transformation).
- 8. [Optional] Show that the distributive laws in a 2-category \mathcal{C} correspond to monads in the 2-category of monads in \mathcal{C} : $DLaw(\mathcal{C}) = Mnd(Mnd(\mathcal{C}))$.

A strict factorization system on a category C consists of a pair of subcategories \mathcal{L} and \mathcal{R} with the same objects as C such that every morphism f of C factors uniquely as $f = r \circ l$ with $l \in \mathcal{L}$ and $r \in \mathcal{R}$.

9. Show that a distributive law between monads in the 2-category **Span** corresponds to a strict factorization system.