Algebras

Samuel Mimram

1 Algebras for an endofunctor

An algebra for an endofunctor $F: \mathcal{C} \rightarrow \mathcal{C}$ is a pair (A, f) where A is an object of \mathcal{C} and $f: F A \rightarrow A$ a morphism of \mathcal{C}. A morphism $h:(A, f) \rightarrow(B, g)$ between two such algebras consists of a morphism $h: A \rightarrow B$ such that

In the following, we mostly consider algebras in Set.

1. Define inductively the functions

- length : 'a list -> int giving the length of a list,
- map : ('a -> 'b) -> 'a list -> 'b list applying a function to all elements of a list,
- double : 'a list -> 'a list which duplicates every successive element, for instance double $[1 ; 2 ; 3]=[1 ; 1 ; 2 ; 2 ; 3 ; 3]$.

2. Suppose given a type 'a ilist of infinite lists with elements of type 'a. Define coinductively

- odd : 'a ilist -> 'a ilist keeping elements of a list at odd positions,
- merge : 'a ilist -> 'a ilist -> 'a ilist taking alternatively elements from one of two lists.

3. Show that $[0, S]: 1+\mathbb{N} \rightarrow \mathbb{N}$ is an initial algebra for the endofunctor $T(X)=1+X$ of Set.
4. Use this fact to define the function $f: \mathbb{N} \rightarrow \mathbb{Q}$ such that $f(n)=2^{-n}$.
5. Show that two initial algebras of an endofunctor are isomorphic (via morphisms of algebras).
6. Show that an initial algebra $f: F A \rightarrow A$ of an endofunctor F is an isomorphism.
7. Solve the equation $x=1+a x$ and develop the solution in power series.
8. Show that the set $A^{*}=\biguplus_{n \in \mathbb{N}} A^{n}$, which can be seen as the set of lists of elements of A, is an initial algebra for $T(X)=1+A \times X$.
9. Use this fact to define the length function $\ell: A^{*} \rightarrow \mathbb{N}$ and the double function $d: A^{*} \rightarrow A^{*}$. Show that $\ell \circ d(l)=2 \ell(l)$ for every $l \in A^{*}$.
10. Explain briefly how we could interpret simple inductive types of OCaml by using initial algebras.
11. What is the initial algebra for $T(X)=1+X \times X$? For $T(X)=X^{*}$? For $T(X)=A \times X$?

2 Coalgebras for an endofunctor

A coalgebra for $F: \mathcal{C} \rightarrow \mathcal{C}$ is a pair (A, f) with $f: A \rightarrow F A$. Morphisms are defined similarly as previously.

1. Show that the set $A^{\mathbb{N}}$ of streams is a final coalgebra for the endofunctor $T(X)=A \times X$.
2. Use this to define,

- given $a \in A$, the constant stream equal to a,
- the function $\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}$ which to n associates the stream $(n, n+1, n+2, \ldots)$,
- the function $A^{\mathbb{N}} \times A^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$ which merges two streams,
- the functions $A^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$ keeping even and odd elements.

3. Show that final coalgebras are unique up to isomorphism and are isomorphisms.
4. Show that merge $(\operatorname{even}(l), \operatorname{odd}(l))=l$ for every $l \in A^{\mathbb{N}}$.

A bisimulation on $A^{\mathbb{N}}$ is a relation $R \subseteq A^{\mathbb{N}} \times A^{\mathbb{N}}$ such that $R\left(x:: l, x^{\prime}:: l^{\prime}\right)$ implies $x=x^{\prime}$ and $R\left(l, l^{\prime}\right)$. The coinductive proof principle says that if $R\left(l, l^{\prime}\right)$ for some bisimulation R then $l=l^{\prime}$.
5. Assuming this principle, show again the result of previous question.
6. Show the coinductive proof principle (hint: show that R has a coalgebra structure).
7. Generalize the coinductive proof principle to an arbitrary endofunctor.
8. What is the final coalgebra of $T(X)=1+A \times X$? of $T(X)=1+X$?
9. Show that automatas can be seen as coalgebras.

References

[1] B. Jacobs and J. Rutten. An introduction to (co)algebra and (co)induction. 2011.

