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1 Algebras for an endofunctor

An algebra for an endofunctor F : C → C is a pair (A, f) where A is an object of C and f : FA→ A a
morphism of C. A morphism h : (A, f)→ (B, g) between two such algebras consists of a morphism
h : A→ B such that
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In the following, we mostly consider algebras in Set.

1. Define inductively the functions

– length : ’a list -> int giving the length of a list,

Solution.

let rec length l =

match l with

| x::l -> 1 + length l

| [] -> 0

– map : (’a -> ’b) -> ’a list -> ’b list applying a function to all elements of a
list,

Solution.

let rec map f l =

match l with

| x::l -> (f x)::(map f l)

| [] -> []

– double : ’a list -> ’a list which duplicates every successive element, for instance
double [1;2;3] = [1;1;2;2;3;3].

Solution.

let rec double l =

match l with

| x::l -> x::x::(double l)

| [] -> []

2. Suppose given a type ’a ilist of infinite lists with elements of type ’a. Define coinductively
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– even : ’a ilist -> ’a ilist keeping elements of a list at even positions,

Solution. If we had support for this in OCaml, we should be able to write something
like

head (even l) = head l

tail (even l) = even (tail (tail l))

To convince ourselves that it works, we can compute the second element of even l:

head (tail (even l)) = head (even (tail (tail l))) = head (tail (tail l))

as expected.

– merge : ’a ilist -> ’a ilist -> ’a ilist taking alternatively elements from one
of two lists.

Solution.

head (merge l m) = head l

tail (merge l m) = merge (m (tail l))

3. We write S : N → N for the successor function. Show that [0, S] : 1 + N → N is an initial
algebra for the endofunctor TX = 1 +X of Set.

Solution. Suppose given an algebra f : TX → X. We have to show that there exist a unique
h : N→ X such that
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Because the source of f is 1 +X, it is of the form f = [f0, f1]. Suppose that an h as above
exists. Writing 1 = {?}, the commutation of the above diagram gives us

h(0) = f0(?) h(S(n)) = f1(h(n))

for n ∈ N. By recurrence, the function h is thus necessarily defined as

h(n) = fn1 (f0(?))

And conversely, this function makes the diagram commute. In this way an algebra f = [f0, f1] : 1+X → X
defines a function h : N→ X, where f0 specifies the base case and f1 the inductive case.

4. Use this fact to define the function h : N→ Q such that h(n) = 2−n.

Solution. Consider the algebra f : 1 + Q→ Q defined by

f(?) = 1 f(x) = x/2

for x ∈ Q. The morphism of algebras h : N→ Q given by previous question is the required
function.

5. Show that two initial algebras of an endofunctor are isomorphic (via morphisms of algebras).

Solution. We can define a category whose objects are algebras and morphisms are morphisms
of algebras (it is immediate to check that morphisms of algebras contain identities are stable
under composition). An initial algebra is an initial object in this category and two initial
objects are necessarily isomorphic.



6. Show that an initial algebra f : FA→ A of an endofunctor F is an isomorphism.

Solution. In order to construct a potential inverse g : A → FA, we are going to use the
initiality property. Namely, considering the algebra Ff : FFA → FA, we obtain such a g
satisfying
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We remark that f : FA→ A is obviously a morphism of algebras from Ff to f :
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By composition, we get the morphism of algebras on the left between f and itself:
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However, the identity is also a morphism between f and itself (on the right). By uniqueness,
the two are equal, i.e. f ◦ g = idA. Moreover, the commutation of the diagram defining g
and the fact that F is a functor give us

g ◦ f = Ff ◦ Fg = F (f ◦ g) = F idA = idFA

which shows that g is an inverse for f .

7. Solve the equation x = 1 + ax and develop the solution in power series.

Solution. We have

x =
1

1− a
= 1 + a+ a2 + a3 + . . .

8. Show that the set A∗ =
⊎
n∈NA

n, which can be seen as the set of lists of elements of A, is
an initial algebra for TX = 1 +A×X.

Solution. We first have to explicit the algebra structure on A∗, i.e. define a map

f : 1 +A×A∗ → A

We take the “obvious guess” f = [f0, f1] with f0 : 1→ X and f1 : A×A∗ → A∗, defined by

f0(?) = ε f1(a, u) = au

Consider an algebra g : TX → X. It is of the form f = [g0, g1] with g0 : 1 → X and
g1 : A×X → X. Supposing that f is initial, we would have a unique h satisfying

1 +A×A∗ 1 +A×X
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By commutation of this diagram, we should have

h(ε) = h(f0(?)) = g0(?) h(au) = h(f1(a, u)) = g1(a, h(u))

Conversely, this define a function h : A∗ → X by induction on the length of words, which
makes the diagram commute.

9. Use this fact to define the length function ` : A∗ → N and the double function d : A∗ → A∗.
Show that ` ◦ d(l) = 2`(l) for every l ∈ A∗.

Solution. The length function satisfies

`(ε) = 0 `(au) = 1 + `(u)

It is thus the morphism of algebras from f : 1+A×A∗ → A∗ to the algebra g` = [g`0, g
`
1] : 1+A×N→ N

defined by

g`0(?) = 0 g`1(a, n) = 1 + n

Similarly the double function d is associated to the morphism to the algebra gd = [gd0 , g
d
1 ] : 1+A×A∗ → A∗

defined by

gd0(?) = ε gd1(a, u) = aau

Two morphisms from the initial algebra with the same target are necessarily equal, which
can be used in order to show that two morphisms are equal. In our case,
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where g = [g0, g1] with

g0(?) = 0 g1(a, n) = 2 + n

All we have to do is check the commutation of

– the right diagram on the left

`(gd0(?)) = `(ε) = 0 = g0(?) `(gd1(a, u)) = `(aau) = 2 + `(u) = g1(a, `(u))

– and of the diagram on the right

2`(f0(?)) = 2`(ε) = 0 = g0(?) 2`(f1(a, u)) = 2`(au) = 2(1 + `(u)) = 2 + 2`(u) = g1(2`(u))

in order to conclude.

10. Explain briefly how we could interpret simple inductive types of OCaml by using initial
algebras.

11. What is the initial algebra for TX = 1 +X ×X? For TX = X∗? For TX = A×X?

Solution.

– TX = 1 +X ×X: binary planar trees,

– TX = X∗: planar trees,

– TX = A×X: empty.



2 Coalgebras for an endofunctor

A coalgebra for F : C → C is a pair (A, f) with f : A → FA. Morphisms are defined similarly as
previously.

1. Show that the set AN of streams is a final coalgebra for the endofunctor TX = A×X.

Solution. We first have to define the coalgebra structure f : AN → A × N. We take the
“obvious guess”

f(a0a1a2a3 . . .) = (a0, a1a2a3 . . .) = (f0(a0a1a2a3 . . .), f1(a0a1a2a3 . . .))

where f0 is the “head” function and f1 is the “tail” function. Given a coalgebra g : X → A×X,
which is necessarily of the form g = 〈g0, g1〉 with g0 : X → A and g1 : X → X, a morphism
h from g to f should satisfy

X AN

A×X A×AN

〈g0,g1〉

h

〈f0,f1〉

A×h

which means that we should have, for u ∈ AN,

f0(h(u)) = g0(u) f1(h(u)) = h(g1(u))

This defines a unique function h : X → AN since, writing h(u) = a0a1a2 . . ., we should have,
by induction,

ai = f0(f i1(h(u))) = g0(gi1(u))

Conversely, this function makes the diagram commute.

2. Use this to define,

– given a ∈ A, the constant stream equal to a,

– the function N→ NN which to n associates the stream (n, n+ 1, n+ 2, . . .),

– the function AN ×AN → AN which merges two streams,

– the function AN → AN keeping even elements.

Solution. We have seen that in an algebra g = 〈g0, g1〉, g0 specifies the head of the stream
and g1 the tail of the stream: we can make definitions of the form

head(h(u)) = g0(u) tail(h(u)) = h(g1(u))

We thus makes the following definitions:

– constant stream: we consider the coalgebra g : 1→ A× 1 defined by

g0(?) = a g1(?) = ?

– counting stream: we consider the coalgebra g : N→ A× N defined by

g0(n) = n g1(n) = n+ 1

– merging streams: we consider the coalgebra on X = AN ×AN defined by

g0(u, v) = head(u) g1(u, v) = (v, tail(u))

which corresponds to the definition



head (merge u v) = head u

tail (merge u v) = merge v (tail u)

– even: we consider the coalgebra on X = AN defined by

g0(u) = head(u) g1(u) = tail(tail(u))

which corresponds to the definition

head (even u) = head u

tail (even u) = even (tail (tail u))

3. Show that final coalgebras are unique up to isomorphism and are isomorphisms.

Solution. By duality.

4. Show that merge(even(u), odd(u)) = u for every u ∈ AN, where odd(l) = even(tail(l)).

Solution. We use the same kind of reasoning as above: identity is a coalgebra morphism
from f to f , so that we will be able to conclude if we can show that u 7→ merge(even(u), odd(u))
is also a coalgebra morphism from f to f , i.e.

AN AN

A×AN A×AN

〈head,tail〉

u7→merge(even(u),odd(u))

〈head,tail〉

(a7→a)×(u 7→merge(even(u),odd(u)))

and indeed we have

head(merge(even(u), odd(u))) = head(even(u))

= head(u)

and

tail(merge(even(u), odd(u))) = merge(odd(u), tail(even(u)))

= merge(odd(u), even(tail(tail(u))))

= merge(even(tail(u)), odd(tail(u)))

A bisimulation on AN is a relation R ⊆ AN × AN such that R(x :: u, x′ :: u′) implies x = x′ and
R(u, u′). The coinductive proof principle says that if R(u, u′) for some bisimulation R then u = u′.

5. Assuming this principle, show again the result of previous question.

Solution. We consider the following relation R on AN defined by

R = {(merge(even(u), odd(u)), u) | u ∈ AN}

Previous proof can be reformulated as showing that, for every (u, v) ∈ R, we have head(u) = head(v)
and (tail(u), tail(v)) ∈ R, and we conclude using the coinductive proof principle.

6. Show the coinductive proof principle (hint: show that R has a coalgebra structure).

Solution. We have a coalgebra structure

g = 〈g0, g1〉 : R→ A×R



defined by g0(u, v) = head(u) and g1(u, v) = (tail(u), tail(v)) (the map g1 is well-defined
because R is a bisimulation). Now we observe that we have two coalgebra morphisms to the
terminal one, induced by the two projections R→ AN:

R AN
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By terminality, we have π1 = π2 from which we conclude.

7. Generalize the coinductive proof principle to an arbitrary endofunctor.

Solution. Given an endofunctor T and two coalgebras g : X → TX and h : Y → Y , a
bisimulation is a relation R ⊆ X × Y equipped with a coalgebra structure r : R→ TR such
that the two projections are coalgebra morphisms:

X R Y

TX TR TY

g

π1

r

π2

h

Tπ1 Tπ2

The coinductive proof principle is now the following. We write f : X → TX for the final
coalgebra. Given x, x′ ∈ X, if there exists a bisimulation R between f and itself such that
(x, x′) ∈ R then x = x′.

8. What is the final coalgebra of TX = 1 +A×X? of TX = 1 +X?

Solution. We have

– TX = 1 +A×X: finite or infinite lists of elements of A,

– TX = 1 +X: N t {ω}.

9. Show that automatas can be seen as coalgebras.

Solution. Automata can be seen as algebras over TX = 2×XA: in a coalgebra

g : X → 2×XA

X can be seen as the set of states, the first component indicates whether a state is final or
not and the second component indicates the transition function at a given state.
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