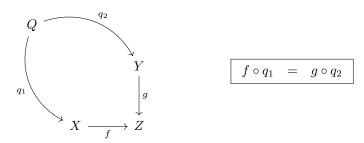
Travaux Dirigés Pullbacks, monos, epis and subobjects

 λ -calculs et catégories (23 septembre 2019)

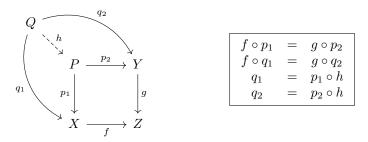
1 Pullbacks

In this exercise, we study the notion of pullback (called "produit fibré" in French), an important variation of the notion of "cartesian product" studied during the lecture. A commutative diagram in a category \mathscr{C}

is called a pullback diagram when the following property holds: for every commutative diagram



there exists a unique morphism $h: Q \rightarrow P$ making the diagram below commute:



§1. Given two functions $f: X \to Z$ and $g: Y \to Z$, describe explicitly a set P and a pair of functions $p_1: P \to X$ and $p_2: P \to Y$ defining a pullback diagram of the form (*) in the category Sets of sets and functions. Hint: the terminology "produit fibré" comes from this construction.

§2. Given two pullback diagrams

in a category \mathscr{C} , show that the commutative diagram

$$\begin{array}{cccc} Y'' & \stackrel{p'}{\longrightarrow} & Y' & \stackrel{p}{\longrightarrow} & Y \\ g'' & & (c) & & \downarrow^g \\ X'' & \stackrel{f'}{\longrightarrow} & X' & \stackrel{f}{\longrightarrow} & X \end{array}$$

obtained by "glueing" the two diagrams (a) and (b) defines a pullback diagram in the category \mathscr{C} .

§3. Suppose given three commutative diagrams (a)(b)(c) in a category \mathscr{C} . We have seen in the previous question that when (b) is a pullback diagram,

(a) is a pullback diagram \Rightarrow (c) is a pullback diagram

Establish the converse property that

(c) is a pullback diagram \Rightarrow (a) is a pullback diagram

when (b) is a pullback diagram.

§4. Exhibit an example of three commutative diagrams (a)(b)(c) such that

(a) and (c) are pullback diagrams... but (b) is not a pullback diagram!

Hint: one can take $X = \{x\}$ et $X'' = \{x''\}$ singleton sets and $X' = \{x_1, x_2\}$ a twoelement set in the category $\mathscr{C} =$ Sets.

2 Monomorphisms and epimorphisms

§1. An arrow $m : A \to B$ of a category \mathscr{C} is called a monomorphism (mono for short) when m is left-simplifiable in the sense that

$$m \circ f = m \circ g \quad \Rightarrow \quad f = g$$

for every pair of arrows $f, g: X \to A$. Show that a function $m: A \to B$ is a mono in the category Sets precisely when it is an injective function.

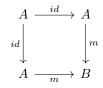
§2. An arrow $e: A \to B$ of a category \mathscr{C} is called an epimorphism (epi for short) when e is right-simplifiable in the sense that

$$f \circ e = g \circ e \quad \Rightarrow \quad f = g$$

for every pair of arrows $f, g: B \to Y$. Show that a function $e: A \to B$ is an epi in the category Sets precisely when it is a surjective function.

§3. Show that in any category \mathscr{C} , the composite $g \circ f : A \to C$ of two monos $f : A \to B$ and $g : B \to C$ is a mono, and that the composite of two epis is an epi.

§4. Show that an arrow $m: A \rightarrow B$ is a mono precisely when the commutative diagram



is a pullback diagram in the category \mathscr{C} . Explain what the property means in the specific case of a function $m : A \to B$ in the category Sets.

§5. Show that every pullback diagram

$$V \xrightarrow{p} U$$

$$m' \downarrow \qquad (\circledast) \qquad \downarrow^{m}$$

$$B \xrightarrow{f} A$$

in a category \mathscr{C} satisfies the following property:

 $m: U \to A \text{ is a mono} \Rightarrow m': V \to B \text{ is a mono.}$

Show that the converse property does not hold by constructing a counter-example in the category Sets.

3 Comma categories and subobject categories

§1. Every object A in a category \mathscr{C} induces a category \mathscr{C}/A called the comma category on the object A, and defined in the following way. The objects of \mathscr{C}/A are the pairs (X, f) consisting of an object $X \in \mathscr{C}$ and of an arrow

$$f: X \to A$$

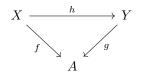
with target A. The arrows of the category \mathscr{C}/A

$$h : (X, f) \longrightarrow (Y, g)$$

are the morphisms

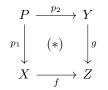
h : $X \longrightarrow Y$

of the underlying category \mathscr{C} , making the diagram below commute:

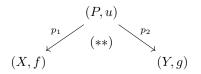


Establish our claim above that \mathscr{C}/A defines a category.

§2. Show that a commutative diagram

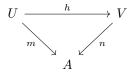


in the category \mathscr{C} is the same thing as a diagram



in the category \mathscr{C}/Z . Show moreover that the commutative diagram (*) is a pullback in the category \mathscr{C} precisely when the span diagram (**) defines a cartesian product of (X, f) and (Y, g) in the comma category \mathscr{C}/Z . Deduce from this that the pullback diagram (*) associated to a pair of morphisms $f : X \to Z$ and $g : Y \to Z$ is unique up to isomorphism.

§3. Every object A in a category \mathscr{C} induces a category $\operatorname{Sub}(A)$ called the category of subobjects of A, and defined in the following way. Its objects (U,m) are the pairs consisting of an object $U \in \mathscr{C}$ and of a mono $m : U \to A$ with target A. Its morphisms $h : (U,m) \to (V,n)$ are the morphisms $h : U \to V$ of the underlying category \mathscr{C} making the diagram



commute in the category \mathscr{C} . The category $\operatorname{Sub}(A)$ is thus the full subcategory of monos in the comma category \mathscr{C}/A . Show that the category $\operatorname{Sub}(A)$ is a preorder category, in the sense there exists at most one arrow $h: (U,m) \to (V,n)$ between two objects (U,m) and (V,n).

§4. Show that in the case $\mathscr{C} =$ Sets, one recovers the powerset $(\mathscr{P}(A), \subseteq)$ with subsets $U, V \subseteq A$ ordered by inclusion $U \subseteq V$, as the ordered set of equivalence classes associated to the preorder $\operatorname{Sub}(A)$. A useful convention in category theory is to identify the preorder category $\operatorname{Sub}(A)$ with the ordered set $(\mathscr{P}(A), \subseteq)$ in that case.

§5. A category \mathscr{C} has pullbacks when there exists a pullback diagram (*) for every pair of arrows $f: X \to Z$ and $g: Y \to Z$. Show that in a category \mathscr{C} with pullbacks, every arrow $f: B \to A$ induces a monotone function

$$f^*$$
 : $\mathbf{Sub}(A) \longrightarrow \mathbf{Sub}(B)$

1

defined by transporting every mono $m: U \to A$ to the mono $m': V \to B$ using the pullback diagram (\circledast) in Exercise 2.5. Give an explicit description of the resulting monotone function

$$f^* : \mathscr{P}(A) \longrightarrow \mathscr{P}(B)$$

in the case when $\mathscr{C} =$ Sets and when $f : A \to B$ is a function between two sets A and B.