Travaux Dirigés

An equivalent formulation of adjunctions Application to cartesian and to cartesian closed categories

 λ -calculs et catégories (14 novembre 2016)

1 An equivalent formulation of adjunctions

§1. Suppose given a functor

$$R : \mathscr{B} \longrightarrow \mathscr{A}$$

between two categories \mathscr{A} and \mathscr{B} . Show that every map

$$\eta : A \longrightarrow R(LA)$$

from an object A of the category $\mathscr A$ into an object noted LA of the category $\mathscr B$ induces a family of functions

$$\varphi_B : \mathscr{B}(LA, B) \longrightarrow \mathscr{A}(A, RB)$$

parametrized by the objects B of the category \mathcal{B} .

§2. Show that the family φ_B is natural in B in the sense that it defines a natural transformation

$$\varphi : \mathscr{B}(LA, -) \Rightarrow \mathscr{A}(A, R-)$$

between the set-valued functors

$$\mathscr{B}(LA, -) = B \mapsto \mathscr{B}(LA, B)$$
 $\mathscr{A}(A, R-) = B \mapsto \mathscr{A}(A, RB)$

from the category \mathcal{B} to the category Set of sets and functions.

§3. One says that a pair (LA,η) consisting of an object LA of the category ${\mathscr B}$ and of a map

$$\eta : A \longrightarrow R(LA)$$

represents the set-valued functor

$$\mathscr{A}(A,R-)$$
 : \mathscr{B} \longrightarrow **Set** (1)

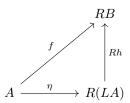
when every function φ_B defined in §1 is a bijection. Show that (LA, η) represents the set-valued functor $\mathscr{A}(A, R-)$ precisely when the following property holds: for every object B and for every map

$$f : A \longrightarrow RB$$

there exists a unique map

$$h : LA \longrightarrow B$$

such that the diagram below commutes:



§4. We suppose from now on that every object A of the category \mathscr{A} , there exists a pair (LA,η_A) which represents the set-valued functor $\mathscr{A}(A,R-)$. For every map $f:A_1\to A_2$ of the category \mathscr{A} , construct a map

$$Lf : LA_1 \longrightarrow LA_2$$

of the category $\mathcal B$ such that the diagram below commutes:

$$A_{2} \xrightarrow{\eta_{A_{2}}} RLA_{2}$$

$$\uparrow \qquad \qquad \uparrow_{RLf}$$

$$A_{1} \xrightarrow{\eta_{A_{1}}} RLA_{1}$$

§5. Use the construction in §4. to define a functor

$$L : \mathscr{A} \longrightarrow \mathscr{B}$$

and a family of bijections

$$\varphi_{A,B}$$
 : $\mathscr{B}(LA,B)$ \cong $\mathscr{A}(A,RB)$

and show that this family φ is natural in A and B.

- §6. Conclude that given a functor $R: \mathcal{B} \to \mathcal{A}$, the existence of a pair (LA, η_A) representing the set-valued functor $\mathcal{A}(A, R-)$ for every object A of the category \mathcal{A} implies the existence of a left adjoint functor $L: \mathcal{A} \to \mathcal{B}$.
- §7. Conversely, show that whenever we have a pair of adjoint functors

$$L:\mathscr{A} \xleftarrow{L} \mathscr{B}:R$$

every object A of the category $\mathscr A$ comes equipped with a pair (LA,η_A) which represents the set-valued functor

$$\mathscr{A}(A,R-) = B \mapsto \mathscr{A}(A,RB) : \mathscr{B} \longrightarrow \mathbf{Set}.$$

§8. Apply the results of §6 to establish that the forgetful functor $R:\mathbf{Mon}\to\mathbf{Set}$ from the category $\mathscr{B}=\mathbf{Mon}$ of monoids and homomorphisms to the category $\mathscr{A}=\mathbf{Set}$ of sets and functions has the free monoid functor

$$L = A \mapsto A^*$$
 : Set \to Mon

as left adjoint.

Application to cartesian closed categories

§1. Show that every adjoint pair

$$L: \mathscr{A} \rightleftarrows \mathscr{B}: R$$

where L is left adjoint to R induces an adjoint pair

$$R^{op}: \mathscr{B}^{op} \longleftarrow \mathscr{A}^{op}: L^{op}$$

where the functor L^{op} is right adjoint to R^{op} .

§2. From this and exercise 1, deduce that a functor $L: \mathscr{A} \to \mathscr{B}$ has a right adjoint precisely when for every object B of the category $\mathscr C$ there exists a pair (RB, ε_B) consisting of an object RB of the category $\mathscr A$ and of a map

$$\varepsilon_B$$
 : $L(RB)$ \longrightarrow B

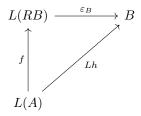
such that the following property holds: for every object A of the category $\mathcal A$ and for every map

$$f: LA \longrightarrow B$$

there exists a unique map

$$h : A \longrightarrow RB$$

such that the diagram below commutes:



Terminology: one says in that case that the pair (RB, ε_B) represents the functor

$$\mathscr{B}(L-,B) = A \mapsto \mathscr{B}(LA,B) : \mathscr{A}^{op} \longrightarrow \mathbf{Set}.$$

§3. Aply this alternative formulation of adjunctions to the functor

$$L = B \mapsto A \times B : \mathscr{C} \longrightarrow \mathscr{C}$$

associated to an object A of a cartesian category $\mathscr C$ with

- the object

and show that one recovers in this way the equivalence between the two formulations of cartesian closed category given in the course.

3 Application to cartesian categories

As we explained during the course, the category $\mathbb{1}$ with one object * and one map (=the identity map) is terminal in the category Cat. This means that for every category \mathscr{C} , there exists a unique functor

$$! : \mathscr{C} \longrightarrow \mathbb{1}. \tag{2}$$

At the same time, every object A of the category $\mathscr C$ gives rise to a functor, also noted

$$A : \mathbb{1} \longrightarrow \mathscr{C}$$
 (3)

which transports the unique object * of the category $\mathbb{1}$ to the object A.

- §1. Show that an object A is terminal in the category \mathscr{C} if and only if the associated functor (3) is right adjoint to the canonical functor (2).
- §2. Show that an object A is initial in the category \mathscr{C} if and only if the associated functor (3) is left adjoint to the canonical functor (2).
- §3. Show that the operation $A \mapsto (A, A)$ which transports every object A of the category $\mathscr C$ to the object (A, A) of the category $\mathscr C \times \mathscr C$ defines a functor

$$\Delta$$
 : \mathscr{C} \longrightarrow $\mathscr{C} \times \mathscr{C}$.

This functor Δ is called the diagonal functor of the category \mathscr{C} .

§4. Suppose given a pair of objects A, B in a category \mathscr{C} . Show that a triple $(A \times B, \pi_1, \pi_2)$ consisting of an object $A \times B$ and of two maps

$$\pi_1: A \times B \to A$$
 $\pi_2: A \times B \to B$

defines a cartesian product of A and B precisely when the pair $(A \times B, \pi)$ consisting of the object $A \times B$ and of the map in the category $\mathscr{C}^2 = \mathscr{C} \times \mathscr{C}$

$$\pi = (\pi_1, \pi_2) : \Delta(A \times B) \longrightarrow (A, B)$$

represents the functor

$$\mathscr{C}^2(\Delta -, (A, B))$$
 : $\mathscr{C}^{op} \longrightarrow \mathbf{Set}$.

Here, we write 2 for the category with two objects a, b and two maps (= identity maps for a and b).

§5. From this and the exercise 2, deduce that a category $\mathscr C$ is cartesian precisely when the two canonical functors

$$!\,:\,\mathscr{C}\,\longrightarrow\,\mathbb{1}\qquad\qquad \Delta\,:\,\mathscr{C}\,\longrightarrow\,\mathscr{C}\times\mathscr{C}$$

have a right adjoint.