
Monads

Samuel Mimram

1 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures,

which is captured by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the

following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

2. What does the List monad defined below do?

instance Monad [] where

m >>= f = concatMap f m

return x = [x]

3. A Kleisli triple (T, η, (−)∗) on a category C consists of

– a function T : Ob(C)→ Ob(C),
– a function ηA : A→ TA for every object A of C,
– a morphism f∗ : TA→ TB for every morphism f : A→ TB,

such that for every objects A, B, C and morphisms f : A→ TB and g : B → TC,

η∗A = idTA f∗ ◦ ηA = f g∗ ◦ f∗ = (g∗ ◦ f)∗

Show that Kleisli triples are in bijection with monads on C.

4. Construct the Kleisli category associated to a Kleisli triple.

http://www.haskell.org/haskellwiki/Monad


2 Usual monads

Recall that in a cartesian closed category C we have a bijection C(S × A,B) ' C(A,S ⇒ B). You can
use the fact that λ-calculus is an internal language for cartesian closed categories.

1. Describe the adjoint functors and the bijection.

2. Describe the unit and the counit of the associated adjunction, the resulting state monad, and the
Kleisli triple.

3. Describe the Kleisli category.

4. Implement the read and write operations.

Let us study some other monads. For each of those, provide the Kleisli triple, as well as the implementation
of the expected operations.

1. Define the reader monad such that TA is a value of type A depending on a state in S.

2. The stream monad is such that TA = AN. Complete the description.

3. Define the log monad which models a situation where each command might write some lines in a
log file.

4. Define the flag monad where a program might set a flag during its execution (and can never unset).

5. How can you unify the two previous monads. What is an algebra for the resulting monad?

6. The continuation monad is such that TA = (A⇒ S)⇒ S. Complete the description.

3 Monads in Rel

We define Rel as the 2-category whose 0-cells are sets, 1-cells R : A→ B are relations R ⊆ A×B, there
is a unique 2-cell α : R⇒ R′ : A→ B whenever R ⊆ R′.

1. Recall both horizontal and vertical compositions in Rel.

2. Show that a left adjoint in Rel is a function.

3. What is a monad in Rel?

4 Monads in Span

The 2-category of Span is the category where

– a 0-cell is a set

– a 1-cell from A to B is a span: A I Bs t

– a 2-cell f : (s, t)→ (s′, t′) is a function making the following diagram commute

I

A B

I ′

s

f

t

s′ t′

Horizontal composition of 1-cells is given by pullback.

1. What is an endomorphism A→ A? A 2-cell between such endomorphisms?

2. Detail the structure of 2-category.

3. Is it really a 2-category?

4. What is a monad in this “2-category”?


	Monads in Haskell
	Usual monads
	Monads in Rel
	Monads in Span

