
Strong normalization of the simply-typed λ-calculus

Samuel Mimram
samuel.mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

October 24, 2022

We recall the rules of the simply-typed λ-calculus:

Γ, x : A,Γ′ ⊢ x : A
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⇒ B
(⇒I)

Γ ⊢ t : A ⇒ B Γ ⊢ u : A

Γ ⊢ tu : B
(⇒E)

where, in the first rule, we suppose x ̸∈ dom(Γ′). Our goal is to show that every typable term t (in an arbitrary
context) is strongly normalizable, meaning that there is no infinite reduction from t.

1. Can we show the property by induction on the derivation of the typing of t?

I Weak normalization

We first want to show that every typable term t (in an arbitrary context) is weakly normalizable, meaning that a
typable term can reduce to a normal form. We write t → t′ for a reduction in the call-by-value strategy defined
by

t → t′

t u → t′ u

u → u′

(λx.t)u → (λx.t)u′ (λx.t)(λy.u) → t[λy.u/x]

1. Show that the reduction strategy is deterministic, meaning t → t1 and t → t2 implies t1 = t2.

2. For such a strategy is there a difference between weak and strong normalization?

We define the set R(A) of reducible terms of type A by induction by

• for A atomic, R(A) is the set of normalizing closed terms of type A,

• for A and B types, R(A ⇒ B) is the set of normalizing closed terms t of type A ⇒ B such that tu ∈ R(B)
for every term u ∈ R(A).

Here, normalizing is always understood with respect to the normal order strategy.

3. Show that given terms t and t′ such that t → t′, show that t is normalizing if and only if t′ is normalizing.

4. Show the property (CR1): if t ∈ R(A) then t is normalizing.

5. Show the property (CR2): if t ∈ R(A) and t → t′ then t′ ∈ R(A).

6. Show the property (CR3): if t has type A, t → t′ and t′ ∈ R(A) then t ∈ R(A).

7. Suppose that x1 : A1, . . . , xn : An ⊢ t : A is derivable. Show that for all u1 ∈ R(A1), . . . , un ∈ R(An), we
have t[u1/x1, . . . , un/xn] ∈ R(A).

8. Show that any typable closed term t is normalizable.

9. Show that typable λ-terms are weakly normalizable.

10. Show that there are non-typable λ-terms.

11. Show that R(A) is, in fact, the set of closed terms of type A.

http://lambdacat.mimram.fr/


II Strong normalization

We now turn to strong normalization. In the course of the proof, will need the following well-founded induction
principle.

1. Suppose given a set X equipped with a binary relation → which is well-founded : there is no infinite
sequence of reductions. Suppose given a property P on the elements of X such that, for every t ∈ X, we
have

∀t ∈ X. ((∀t′ ∈ X. t → t′ ⇒ P (t′)) ⇒ P (t))

Show that ∀t ∈ X. P (t) holds. How can we recover recurrence as a particular case of this?

A term t is neutral when no new redex is created when applied to another term u (all the redexes in tu are
either in t or in u).

2. Give an explicit description of neutral terms.

We define R(A), the reducible terms of type A, by induction by

• R(A), for A atomic, is the set of strongly normalizable terms,

• R(A ⇒ B) is the set of terms t such that tu ∈ R(B) for every u ∈ R(A).

We are going to show that following conditions hold:

(CR1) if t ∈ R(A) then t is strongly normalizable,

(CR2) if t ∈ R(A) and t → t′ then t′ ∈ R(A),

(CR3) if t is neutral and for every t′ such that t → t′ we have t′ ∈ R(A) then t ∈ R(A).

3. Show that these conditions imply that a variable x belongs to R(A) for every type A.

4. Show that if t is strongly normalizable and t → t′ then t′ is also strongly normalizable. Does the converse
hold?

5. Show the conditions (CR1), (CR2) and (CR3) by induction on A.

6. Suppose that t[u/x] ∈ R(B) for every u ∈ R(A). Show that λx.t ∈ R(A ⇒ B).

7. Suppose that x1 : A1, . . . , xn : An ⊢ t : A is derivable. Show that for all u1 ∈ R(A1), . . . , un ∈ R(An), we
have t[u1/x1, . . . , un/xn] ∈ R(A).

8. Show that Γ ⊢ t : A derivable implies t ∈ R(A).

9. Show that all typable terms are strongly normalizable.

10. Use this to show that typable terms are confluent.

References

[1] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7. Cambridge university press
Cambridge, 1989.

[2] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

2


	Weak normalization
	Strong normalization

