Realizability

Samuel Mimram

22 November 2021

Second-order logic. We suppose fixed a set \mathcal{T} of *generators* of given arity and write \mathcal{T}^* for the set of generated terms. The syntax of second-order formulas is

$$A ::= X(a_1, \dots, a_n) \mid A \Rightarrow B \mid \forall x.A \mid \forall X.A$$

where $a_i \in \mathcal{T}^*$, each second-order formula X having a fixed arity n. We consider typing rules which extend those of simply-typed λ -calculus by

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x.A} \qquad \frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X.A} \qquad \frac{\Gamma \vdash t : \forall x.A}{\Gamma \vdash t : A[a/x]} \qquad \frac{\Gamma \vdash t : \forall X.A}{\Gamma \vdash t : A[B/X]}$$

where, in the first two rules, we suppose x and X not free in Γ respectively.

- 1. Show that identity can be given the type $\forall X.X \Rightarrow X$.
- 2. Recall the elimination rule for \vee . How can we encode this operator into our logic?
- 3. Similarly, provide an encoding of the operators \wedge , \perp , \neg and existential quantifications.

Realizability. We write Λ for the set of λ -terms and Π for the set of stacks, which are sequences $t_1 \cdot t_2 \cdots t_n$ of λ -terms. Processes are elements (t, π) of $\Lambda \times \Pi$, often written $t \star \pi$. The reduction relation \succ between processes is given by the following two rules:

$$tu \star \pi \succ t \star u \cdot \pi$$
$$\lambda x.t \star u \cdot \pi \succ t[u/x] \star \pi$$

An element of $\mathcal{P}(\Pi)$ is called a *truth value*. Suppose fixed a set \bot of processes closed under anti-reduction. We define an interpretation $\llbracket A \rrbracket \in \mathcal{P}(\Pi)$ by induction on the formula A by

$$\llbracket A \Rightarrow B \rrbracket = \{t \cdot \pi \mid t \in |A|, \pi \in \llbracket B \rrbracket \} \qquad \llbracket \forall x.A \rrbracket = \bigcup_{a \in \mathcal{T}^*} \llbracket A[a/x] \rrbracket \qquad \llbracket \forall X.A \rrbracket = \bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V/X] \rrbracket$$

where

$$|A| = \{ t \in \Lambda \mid \forall \pi \in [A], t \star \pi \in \bot \}$$

denotes the set of realizers of the formula A. Above, we have supposed fixed an interpretation of the first- and second-order free variables (by abuse of notation, given $V \in \mathcal{P}(\Pi)$, we still write V for a variable whose interpretation is V). We write $t \Vdash A$ when $t \in |A|$ and say that t realizes A.

4. What are $[\![\bot]\!]$ and $|\bot|$?

Identity-like terms. Our goal is now to characterize the behavior of terms of type $\forall X.X \Rightarrow X$.

- 5. Give examples of terms which are of type $\forall X.X \Rightarrow X$.
- 6. Show that $(\lambda x.x) \star u \cdot \pi \succ u \star \pi$.

A term $t \in \Lambda$ is identity-like when $t \star u \cdot \pi \succ u \star \pi$ for every $u \in \Lambda$ and $\pi \in \Pi$.

7. Show that if t is identity-like then $t \Vdash \forall X.X \Rightarrow X$.

We admit the adequation lemma: if $x_1:A_1,\ldots,x_n:A_n\vdash t:A$ is derivable and $\forall i,t_i\Vdash A_i$ then $t[t_1/x_1,\ldots,t_n/x_n]\Vdash A$.

- 8. Show the converse to previous question, i.e. $\vdash \theta : \forall X.X \Rightarrow X$ implies that t is identity-like (hint: use a suitably chosen \bot).
- 9. Give an example of an identity-like term which is not the identity, and even non-typable.

Booleans.

- 10. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which encodes the fact that x is a boolean.
- 11. Show that $\vdash \theta : \text{Bool}(0)$ implies $\theta \star t \cdot u \cdot \pi \succ t \star \pi$ (and similarly for $\vdash \theta : \text{Bool}(1)$).

The adequation lemma.

- 12. Show that $t \Vdash A \Rightarrow B$ and $u \Vdash A$ implies $tu \Vdash B$.
- 13. Show that if for every $u \in \Lambda$, $u \Vdash A$ implies $t[u/x] \Vdash B$, then $\lambda x.t \Vdash A \Rightarrow B$.
- 14. Prove the adequation lemma.