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We recall that a functor U : D → C has a left adjoint F : C → D

C D
F

⊥
U

when, for every objects A ∈ C and B ∈ D there is a bijection

ϕA,B : D(FA,B) → C(A,UB)

which is natural in A and B, in the sense that for every f : A→ A′ in C and g : B → B′ in D we
have the commutation of the diagram

D(FA′, B) C(A′, UB)

D(FA,B′) C(A,UB′)

D(Ff,g)

ϕA′,B

C(f,Gg)

ϕA,B′

In this case, U is the right adjoint to F .

1 First examples of adjunctions

1. Show that the forgetful functor U : Top → Set admits a left adjoint F : Set → Top.

Solution. We can guess that the functor F associate to a set A the topological space FA
which is the set A together with an appropriate topology. Since we should have

Top(FA,B) ≃ Set(A,UB)

we need to put a topology on A such that every possible function f : A→ B is continuous,
i.e. we always have that f−1(U) is an open set of A for an open set U of B. There is an
easy way to have that: take the topology on A consisting of all subsets of A (this is called
the discrete topology on A).

2. Show that the forgetful functor U : Top → Set admits a right adjoint F : Set → Top.

Solution. We should now have

Top(A,FB) ≃ Set(UA,B)

which means that FB should be the set B equipped with the less possible number of open
sets: simply take the trivial topology consisting of ∅ and B as open sets.

3. Show that the functor Graph → Set sending a graph to the underling set of vertices has
both a left and a right adjoint.
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2 The adjoint functor theorem between posets

In this exercise, we will study adjunctions between posets (seen as categories) and prove, in this
restricted case, the adjoint functor theorem which provides conditions for the existence of adjoints
to functors.

1. What is a functor between posets?

Solution. An increasing function.

2. Consider the inclusion F : Z → R between posets. What is a left/right adjoint?

Solution. Writing G : R → Z for the right adjoint we should have, for n ∈ Z and x ∈ R,
F (n) ≤ x in R if and only if n ≤ G(x) in Z. Therefore

G(x) = ⌊x⌋ = sup{m ∈ Z | m ≤ x}

Namely,

n ≤ G(x) ⇔ n ≤ sup{m ∈ Z | m ≤ x}
⇔ n ∈ {m ∈ Z | m ≤ x}
⇔ n ≤ x

A left adjoint is dually given by G(x) = ⌈x⌉.

3. Consider the function F : Z → Z between posets such that F (n) = 2n. What is a left/right
adjoint?

Solution. The right adjoint is G(n) = ⌊n/2⌋. Namely,

F (m) ≤ n⇔ 2m ≤ n

⇔ m ≤ n/2

⇔ m ≤ ⌊n/2⌋

The right adjoint is G(n) = ⌈n/2⌉.

We suppose fixed a functor F : C → D where C and D are posets.

4. Show that if F is a left adjoint then it preserves arbitrary joins.

Solution. We write G : D → C for the right adjoint. Fix a family (Ai)i∈I of objects. For every
index i, we have Ai ≤

∨
iAi thus, since F is increasing (this is a functor), F (Ai) ≤ F (

∨
iAi),

and therefore ∨
i

F (Ai) ≤ F (
∨
i

Ai)

In order to show the converse inequality, observe that for any i ∈ I, we have F (Ai) ≤
∨
i F (Ai),

therefore (we have an adjunction) Ai ≤ G(
∨
i F (Ai)), thus

∨
iAi ≤ G(

∨
i F (Ai)), and finally

F (
∨
i

Ai) ≤
∨
i

F (Ai)

5. Suppose that C has all joins. Show that F is a left adjoint if and only if it preserves arbitrary
joins.

Solution. The left-to-right implication is the previous question. Conversely, suppose that F
preserves arbitrary joins. We define G : D → C by

G(B) =
∨

{A ∈ C | F (A) ≤ B}



This is clearly a functor in the sense that G is monotone. Finally, let us show that FA ≤ B
if and only if A ≤ GB. If FA ≤ B then A ∈ {A ∈ C | F (A) ≤ B} and thus A ≤ G(B).
Conversely, if A ≤ GB, then

FA ≤ FGB = F (
∨

{A ∈ C | F (A) ≤ B}) =
∨

{FA | FA ≤ B} ≤ B

6. A natural generalization of previous question is: a functor F is a left adjoint if and only if
it preserves arbitrary colimits. Do you foresee any problem with proving this?

3 Free monoids and categories

We write Mon for the category of monoids and morphisms of monoids.

1. Show that the forgetful functor U : Mon → Set admits a left adjoint F : Set → Mon.

Solution. The forgetful functor U associates, to a monoid (M,×, 1), the underlying set M .
Given a set A, the free monoid (A∗, ·, []) is the monoid whose elements are words [a1 . . . an]
whose letters are in A, multiplication is given by composition and neutral element is the
empty word []. The left adjoint is the functor which to a set A associates the free monoid
FA = A∗ and to a function f : A→ B associates the morphism of monoids

f∗ : A∗ → B∗

[a1 . . . an] 7→ [f(a1) . . . f(an)]

Given a set A and a monoid (M,×, 1), let us construct bijections:

Mon(FA, (M,×, 1)) Set(A,U(M,×, 1))

ϕA,M

ψA,M

i.e.

Mon(A∗, (M,×, 1)) Set(A,M)

ϕA,M

ψA,M

Given a morphism of monoids f : A∗ → (M,×, 1), we define the function

ϕA,M (f) : A→M

a 7→ f([a])

i.e. the restriction of f to one-letter functions, and given a function g : A→M , we define

ψA,M (g) : A∗ → (M,×, 1)
[a1 . . . an] 7→ f(a1)× . . .× f(an)

We now have to check that those functions are mutually inverse. Given a morphism of
monoids f : A∗ → (M,×, 1), we have

ψA,M ◦ ϕA,M (f)([a1 . . . an]) = f([a1])× . . .× f([an]) = f([a1 . . . an])

because f is a morphism of monoids. Conversely, given a function g : A→M , we have

ϕA,M ◦ ψA,M (g)(a) = ψA,M (g)([a]) = g(a)

Finally, we have to check that these bijections are natural, this proof being left to the reader.



2. Show that the forgetful functor U : Cat → Graph admits a left adjoint F : Graph → Cat.

Solution. This situation is a generalization of the previous one: monoids are bijection with
categories with one object, and sets are in bijection with graphs with one vertex. Given
a graph G, we define FG to be the free category on G: its objects are the vertices of G,
a morphism from x to y is a (directed) path from x to y in G, composition is given by
concatenation of paths, identities are given by empty paths. The rest of the proof is pretty
similar to previous question.

4 Terminal objects and products by adjunctions

1. Given a category C, show that the terminal functor T : C → 1 has a right (resp. left) adjoint
iff the category C admits a terminal (resp. initial) object.

2. Given a category C, describe the diagonal functor ∆ : C → C × C and show that the
category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a
right (resp. left) adjoint.

5 Cartesian closed categories

A category is cartesian closed when for every object B, the functor −×B admits a right adjoint
B ⇒ −.

1. Show that Set is cartesian closed.

2. Show that the category POSet of partially ordered sets and increasing functions is a carte-
sian closed category.

Solution. The product of two posets (M,≤M ) and (N,≤N ) is (M × N,≤M×N ) with
(m,n) ≤M×N (m′, n′) whenever both m ≤M m′ and n ≤N n′. The exponential closure
(NM ,≤NM ) is the set of increasing functions M → N ordered by f ≤NM g whenever
f(m) ≤N g(m) for every m ∈M .

3. Show that the categoryMon is cartesian but not closed (hint: look at the properties satisfied
by the terminal object).

Solution. The cartesian product of monoids M and N is the usual cartesian product M ×N
of sets equipped with pointwise multiplication: (u, u′)× (v, v′) = (u× v, u′ × v′). The trivial
monoid 1 is both initial and terminal. If Mon was closed, we would have

Mon(M,N) ≃ Mon(1×M,N) ≃ Mon(1, NM )

and therefore there should be exactly one morphism between any two objects (i.e. the cate-
gory is equivalent to the terminal one).

4. Show that the category Cat is cartesian closed.
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