Cartesian categories

Samuel Mimram
samuel.mimram@lix.polytechnique.fr
http://lambdacat.mimram.fr

September 26, 2022

0 Categories

0 . Recall the definition of category and provide some examples (e.g. Set, Top, Vect, Grp, Rel, Cat, etc.).

1 Cartesian categories

Suppose fixed a category \mathcal{C}. A cartesian product of two objects A and B is given by an object $A \times B$ together with two morphisms

$$
\pi_{1}: A \times B \rightarrow A \quad \text { and } \quad \pi_{2}: A \times B \rightarrow B
$$

such that for every object C and morphisms $f: C \rightarrow A$ and $g: C \rightarrow B$, there exists a unique morphism $h: C \rightarrow A \times B$ making the diagram

commute. We also recall that a terminal object in a category is an object 1 such that for every object A there exists a unique morphism $f_{A}: A \rightarrow 1$. A category is cartesian when it has finite products, i.e. has a terminal object and every pair of objects admits a product.

1. Suppose that (E, \leq) is a poset. We associate to it category whose objects are elements of E and such that there exists a unique morphism between object a and b iff $a \leq b$. What is a terminal object and a product in this category?

Solution. A terminal object is an element $b \in E$ such that, for every other element $a \in E$, there is a unique morphism $a \rightarrow b$, i.e. $a \leq b$. A terminal object is thus precisely a maximal element of the set.
Given two elements a and b of E, a product is an element $a \times b$ equipped with two morphisms $\pi_{1}: a \times b \rightarrow a$ and $\pi_{2}: a \times b \rightarrow b$ such that for every element c equipped with two morphisms $f: c \rightarrow a$ and $f: c \rightarrow b$ there exists a unique morphism $h: c \rightarrow a \times b$ making some diagrams commute. This is thus precisely an element $a \times b$ such that $a \times b \leq a$ and $a \times b \leq b$ such that for every element c with $c \leq a$ and $c \leq b$, we have $c \leq a \times b$. Otherwise said, $a \times b$ is an infimum of a and b.
2. Show that the category Set of sets and functions is cartesian.

Solution. Given two sets A and B, we define

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

and

$$
\begin{aligned}
\pi_{1}: A \times B & \rightarrow A & \pi_{2}: A \times B & \rightarrow B \\
(a, b) & \mapsto a & (a, b) & \mapsto b
\end{aligned}
$$

Given a set C and functions $f: C \rightarrow A$ and $g: C \rightarrow B$, suppose that there exists a function $h: C \rightarrow A \times B$ making the following diagram commute:

Given $c \in C$, we have $h(c) \in A \times B$, i.e. $h(c)$ is of the form $h(c)=(a, b)$. The commutation of the left triangle imposes

$$
a=\pi_{1}(a, b)=\pi_{1} \circ h(c)=f(c)
$$

and the one of the right that $b=g(c)$. Therefore, necessarily, we have $h(c)=(f(c), g(c))$ (if h exists it is unique). Conversely, the function h thus defined makes the two triangle commutes (h actually exists).
3. Show that two terminal objects in a category are necessarily isomorphic.

Solution. Suppose given two terminal objects A and B. Since B is terminal, we have a unique morphism $f: A \rightarrow B$ and, since A is terminal, we have a unique morphism $g: B \rightarrow A$.

$$
\mathrm{id}_{A} G A \overbrace{r_{g}}^{f} B \circlearrowleft \operatorname{id}_{B}
$$

The composite $g \circ f: A \rightarrow A$ and $\operatorname{id}_{A}: A \rightarrow A$ are both morphisms with the same source and A as target: since A is terminal, we therefore have $g \circ f=\operatorname{id}_{A}$. Similarly, we have $f \circ g=\operatorname{id}_{B}$ and we deduce that A and B are isomorphic.
4. Similarly, show that the cartesian product of two objects is defined up to isomorphism.

Solution. Fix two objects A and B and suppose that they admit two products $\left(A \times B, \pi_{1}, \pi_{2}\right)$ and $\left(A \times^{\prime} B, \pi_{1}^{\prime}, \pi_{2}^{\prime}\right)$. From the following diagram,

by definition of the product $A \times^{\prime} B$, we deduce the existence of a unique morphism $f: A \times B \rightarrow A \times{ }^{\prime} B$ such that $\pi_{1}^{\prime} \circ f=\pi_{1}$ and $\pi_{2}^{\prime} \circ f=\pi_{2}$. Similarly, there exists a unique morphism
$g: A \times^{\prime} B \rightarrow A \times B$ such that $\pi_{1} \circ g=\pi_{1}^{\prime}$ and $\pi_{2} \circ g=\pi_{2}^{\prime}$:

Now, we have two morphisms from $A \times B$ to $A \times B$, namely $\operatorname{id}_{A \times B}$ and $g \circ f$:

and those make the two triangles commute: we have

$$
\pi_{1} \circ \operatorname{id}_{A \times B}=\pi_{1} \quad \pi_{2} \circ \operatorname{id}_{A \times B}=\pi_{2}
$$

and

$$
\pi_{1} \circ g \circ f=\pi_{1}^{\prime} \circ f=\pi_{1} \quad \pi_{2} \circ g \circ f=\pi_{2}^{\prime} \circ f=\pi_{2}
$$

Therefore by universal property of the product, we have $g \circ f=\mathrm{id}_{A \times B}$. Similarly, we have $f \circ g=\operatorname{id}_{A \times \prime B}$ and thus $A \times B$ and $A \times^{\prime} B$ are isomorphic.

5 . How could you show previous question using question 3.?
Solution. Suppose fixed two objects A and B of our ambient category \mathcal{C}. The idea is to construct another category \mathcal{D} in which a terminal object is precisely a product of A and B. We therefore define the category

- whose objects are triple $\left(C, f_{1}, f_{2}\right)$ where C is an object of \mathcal{C} and $f_{1}: C \rightarrow A$ and $f_{2}: C \rightarrow B$ are morphisms of \mathcal{C},
- a morphism in $\mathcal{D}\left(\left(C, f_{1}, f_{2}\right),\left(D, g_{1}, g_{2}\right)\right)$ is a morphism $h: C \rightarrow D$ of \mathcal{C} such that $g_{1} \circ h=f_{1}$ and $g_{2} \circ h=f_{2}:$

- identities are identities of \mathcal{C},
- composition is the same as in \mathcal{C}.
(We leave the reader check the composite is well-defined, i.e. that the composite of two morphisms is still a morphism, and that identities are actually morphisms). A terminal object in \mathcal{D} is an object $\left(A \times B, \pi_{1}, \pi_{2}\right)$ such that for every other object (C, f, g) there is a
unique morphism $h:(C, f, g) \rightarrow\left(A \times B, \pi_{1}, \pi_{2}\right)$ in \mathcal{D}, i.e. there exists a unique morphism $h: C \rightarrow A \times B$ in \mathcal{C} making the following diagram commute:

i.e. $A \times B$ is a product of A and B. By question 3, two such objects are isomorphic in \mathcal{D}, and they will thus be isomorphic in \mathcal{C} since composition and identities in \mathcal{D} are induced by those of \mathcal{C}.

6. Show that for every object A of a cartesian category, the objects $1 \times A, A$ and $A \times 1$ are isomorphic.

Solution. Of course the same reasoning "by hand" as above can be performed here. Another way to proceed in order to show that $1 \times A$ and A are isomorphic is to show that $\left(A, t_{A}, \operatorname{id}_{A}\right)$ is a product of 1 and A (where $t_{A}: 1 \rightarrow A$ is the terminal map) and conclude by question 4. Namely, given two morphisms $f: C \rightarrow 1$ and $g: C \rightarrow A$, we have the morphism g which make the following diagram commute:

The left triangle commutes because 1 is terminal and therefore $\pi_{1} \circ g=f$, and the right triangle commutes by definition of identities: $\mathrm{id}_{A} \circ g=g$. Conversely, g is the only such morphism by commutation of the right triangle.
7. Show that for every objects A and $B, A \times B$ and $B \times A$ are isomorphic.
8. Show that for every objects A, B and $C,(A \times B) \times C$ and $A \times(B \times C)$ are isomorphic.

2 Examples of cartesian categories

1. Show that the category $\mathbf{R e l}$ of sets and relations is cartesian.

Solution. Let us first properly define the category Rel. An object is a set, a morphism in $\operatorname{Rel}(A, B)$ is a relation between A and B, i.e. a subset of $A \times B$:

$$
\boldsymbol{\operatorname { R e l }}(A, B)=\mathcal{P}(A, B)
$$

Composition of $R: A \rightarrow B$ and $S: B \rightarrow C$, i.e. $R \subseteq A \times B$ and $S \subseteq B \times C$, is the following subset of $A \times C$:

$$
S \circ R=\{(a, c) \mid \exists b \in B \cdot(a, b) \in R \wedge(b, c) \in S\}
$$

the identity on A is the diagonal subset of $A \times A$:

$$
\operatorname{id}_{A}=\{(a, a) \mid a \in A\}
$$

It turns out that that product of A and B is the disjoint union $A \sqcup B$ of the sets A and B (we write $\iota_{1}(a)$, resp. $\iota_{2}(b)$, for the canonical injections of an element $a \in A$, resp. $b \in B$, in $A \sqcup B)$. The projections are

$$
\pi_{1}=\left\{\left(\iota_{1}(a), a\right) \mid a \in A\right\} \subseteq(A \sqcup B) \times A \quad \pi_{2}=\left\{\left(\iota_{2}(b), b\right) \mid b \in B\right\} \subseteq(A \sqcup B) \times B
$$

Given a pair of morphisms $f: C \rightarrow A$ and $g: C \rightarrow B$,

one can check that the unique mediating morphism $h: C \rightarrow A \times B$ is

$$
h=\left\{\left(c, \iota_{1}(a)\right) \mid(c, a) \in f\right\} \cup\left\{\left(c, \iota_{1}(b)\right) \mid(c, b) \in g\right\} \subseteq C \times(A \sqcup B)
$$

2. We write Vect for the category of \mathbb{k}-vector spaces (where \mathbb{k} is a fixed field) and linear functions. Show that this category is cartesian. Given a basis for A and B, describe a basis for $A \times B$.
3. Show that the category Cat is cartesian.

3 Cartesian product as a functor

1. Recall the definition of a functor and provide some examples.
2. Define the category Cat of categories and functors.
3. Given a cartesian category \mathcal{C}, show that the cartesian product induces a functor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.
