Samuel Mimram samuel.mimram@lix.polytechnique.fr http://lambdacat.mimram.fr

December 6, 2021

1 Distributive laws

A distributive law between two monads (S, η^S, μ^S) and (T, η^T, μ^T) on category \mathcal{C} is a natural transformation

 $\lambda \quad : \quad S \circ T \quad \Rightarrow \quad T \circ S$

such that the following diagrams commute

- 1. Can we always compose monads?
- 2. Draw those diagrams as string diagrams in the 2-category Cat.
- 3. Draw the laws for monads as string diagrams.
- 4. Show that the distributive law λ induces a structure of monad on the functor $T \circ S$.
- 5. Consider on **Set** the monads S of free monoid and T of free abelian group. Construct a distributive law $\lambda: ST \Rightarrow TS$ so that the composite monad is the monad of free ring.
- 6. How can we compose three (or more) monads with distributive laws?

2 Monads in Rel

We define **Rel** as the 2-category whose 0-cells are sets, 1-cells $R : A \to B$ are relations $R \subseteq A \times B$, there is a unique 2-cell $\alpha : R \Rightarrow R' : A \to B$ whenever $R \subseteq R'$.

- 1. Recall both horizontal and vertical compositions in Rel.
- 2. Generalize the definition of adjunction and monad to any 2-category.
- 3. Show that a left adjoint in **Rel** is a function.
- 4. What is a monad in **Rel**?

3 Monads in Span

The 2-category of **Span** is the category where

- a 0-cell is a set
- a 1-cell from A to B is a span: $A \xleftarrow{s} I \xrightarrow{t} B$
- a 2-cell $f: (s,t) \to (s',t')$ is a function making the following diagram commute

Horizontal composition of 1-cells is given by pullback.

- 1. What is an endomorphism $A \to A$? A 2-cell between such endomorphisms?
- 2. Detail the compositions and identities of the 2-category.
- 3. Is it really a 2-category?
- 4. What is a monad in this "2-category"?
- 5. Generalize the definition of monad to any bicategory.

A strict factorization system on a category C consists of a pair of subcategories \mathcal{L} and \mathcal{R} with the same objects as C such that every morphism f of C factors uniquely as $f = r \circ l$ with $l \in \mathcal{L}$ and $r \in \mathcal{R}$.

- 6. On Set, we write \mathcal{L} (resp. \mathcal{R}) for the subcategory whose morphisms are epimorphisms (resp. monomorphisms). Show that these form a strict factorization system.
- 7. Show that a distributive law between monads in the bicategory **Span** corresponds to a strict factorization system.

4 Monads in monads

Given a 2-category \mathcal{C} , we write $Mnd(\mathcal{C})$ for the 2-category whose

- 0-cells are monads in \mathcal{C} ,
- a 1-cell from (C, S) to (C', S') is a monad morphism: a 1-cell $T : C \to C'$ of C together with a 2-cell $\lambda : S'T \Rightarrow TS$ such that

– a 2-cell

 $\alpha \qquad : \qquad (T,\lambda) \Rightarrow (T',\lambda') \qquad : \qquad (C,S) \to (C',S')$

is a monad transformation: a 2-cell $\alpha: T \Rightarrow T'$ of \mathcal{C} such that

$$\begin{array}{ccc} S'T & \xrightarrow{\lambda} & TS \\ S'\alpha & & & & \\ S'T' & \xrightarrow{\lambda'} & T'S \end{array}$$

- 8. Define the composition of 1-cells in $Mnd(\mathcal{C})$.
- 9. Show that the distributive laws in a 2-category \mathcal{C} correspond to monads in the 2-category of monads in \mathcal{C} .