TD8 – Limits, presheaf categories

Samuel Mimram

24 January 2013

1 Limits

Suppose given a functor $S: \mathcal{D} \to \mathcal{C}$ and c and object of \mathcal{C} . An *universal arrow* from c to S is given by a pair (r, u) where r is an object of \mathcal{D} and $u: c \to Sr$ is a morphism in \mathcal{C} such that for every other such pair (d, f) (where d is an object of \mathcal{C} and $f: c \to Sd$ is a morphism of \mathcal{C}), there exists a unique morphism $f': r \to d$ of \mathcal{D} such that $Sf' \circ u = f$.

1. Suppose that $U : \mathcal{D} \to \mathcal{C}$ is a functor admitting a left adjoint $F : \mathcal{C} \to \mathcal{D}$. Show that for every object X of \mathcal{D} , (FX, η_X) is a universal arrow from X to U.

Suppose given two categories \mathcal{J} and \mathcal{C} . The *diagonal functor* $\Delta : \mathcal{C} \to \mathcal{C}^{\mathcal{J}}$ is such that

- for every object $C \in \mathcal{C}$, $\Delta(C)$ sends every object of \mathcal{J} to C and every morphism of \mathcal{J} to id_C ,
- for every morphism $f: C \to D \in \mathcal{C}$, $\Delta(f)$ is the natural transformation whose components are f.

The *limit* of a functor $F : \mathcal{J} \to \mathcal{C}$ is a co-universal arrow from Δ to F.

- 2. What is the limit of a functor F in the case where \mathcal{J} is the terminal category.
- 3. Express the notions of product and fibred product in terms of limits.
- 4. Explain the dual notion of colimit.
- 5. Show that a category has pushouts when it has coproducts and coequalizers.

2 Presheaf categories as free cocompletions

We recall that the category of presheaves $\hat{\mathcal{C}}$ over a category \mathcal{C} is the category of functors $\mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ and natural transformations between them.

- 1. Recall that graphs and simplicial sets are presheaf categories.
- 2. The Yoneda embedding $y : \mathcal{C} \to \hat{\mathcal{C}}$ is defined on objects $A \in \mathcal{C}$ by $yA = \mathcal{C}(-, A)$. Make completely explicit the definition of this functor.
- 3. [Yoneda lemma] Show that for every $A \in \mathcal{C}$ and $P \in \hat{\mathcal{C}}, \hat{\mathcal{C}}(yA, P) \cong P(A)$.
- 4. Deduce that the Yoneda embedding is full and faithful.
- 5. What is the Yoneda embedding of the objects in the case of graphs and simplicial sets?
- 6. Explain why every presheaf category is complete and cocomplete.
- 7. Describe a functor $I: \Delta \to \mathbf{Top}$ sending *n* to the canonical *n*-simplex.

8. Use this functor in order to build a *nerve* functor N_I : **Top** $\rightarrow \hat{\Delta}$ associating to every topological space a simplicial set.

To any presheaf $P \in \hat{\mathcal{C}}$, we can associate a *category of elements* whose objects are pairs (A, a) with $A \in \mathcal{C}$ and $a \in P(A)$, and morphisms $f : (A, a) \to (B, b)$ are morphisms $f : A \to B$ of \mathcal{C} such that P(f)(b) = a. We write $\pi_P : \operatorname{El}(P) \to \mathcal{C}$ for the first projection functor. We define the *geometric realization* functor by

$$R_I(P) = \operatorname{colim}(\operatorname{El}(P) \xrightarrow{\pi_P} \Delta \xrightarrow{I} \operatorname{Top})$$

- 8. Compute the geometric realization of a simple simplicial set $(y_3 \text{ for instance})$.
- 9. Show that R_I is left adjoint to N_I .
- 10. Notice that the above proofs could be generalized to any functor $I : \mathcal{C} \to \mathcal{D}$ and deduce that any presheaf $P \in \hat{\mathcal{C}}$ is canonically a colimit of representables:

$$P \quad = \quad \operatorname{colim}(\operatorname{El}(P) \xrightarrow{\pi_P} \mathcal{C} \xrightarrow{y} \hat{\mathcal{C}})$$

We admit the following result: given a adjunction, the right adjoint is full and faithful if and only if the counit is an isomorphism.

11. Show that $\hat{\mathcal{C}}$ is the free cocompletion of \mathcal{C} : given a functor $F : \mathcal{C} \to \mathcal{D}$, there exists a unique cocontinuous functor $G : \hat{\mathcal{C}} \to \mathcal{D}$ such that $G \circ y = F$.