TD2 – Graphs, adjunctions, monads

Samuel Mimram

October 3, 2013

1 Graphs

1. Show that the category Cat(Gr, Set) of functors and natural transformations from the category with two objects 0, 1 and four morphisms

$$id_0: 0 \to 0$$
 $id_1: 1 \to 1$ $s, t: 1 \to 0$

to the category **Set** of sets and functions defines the category of graphs, which is usually denoted **Graph**.

- 2. Reformulate the definition of a category as a graph with some structure.
- 3. Explain that the category $Cat(Gr_2, Set)$ of functors from the category Gr_2 with three objects 0, 1, 2 and nine morphisms

$$id_0: 0 \to 0 \qquad id_1: 1 \to 1 \qquad id_2: 2 \to 2 \qquad s_1, t_1: 2 \to 1 \qquad s_0, t_0: 1 \to 0 \qquad s, t: 2 \to 0$$
 with
$$s_0 \circ s_1 = s_0 \circ t_1 = s \qquad \text{et} \qquad t_0 \circ s_1 = t_0 \circ t_1 = t$$

defines a category of 2-graphs and morphisms of 2-graphs.

4. Reformulate the definition of 2-categories using the notion of 2-graph.

2 Adjunctions between sets

We recall that a functor $F: \mathcal{C} \to \mathcal{D}$ is *left adjoint* to a functor $G: \mathcal{D} \to \mathcal{C}$ if there is a natural bijection between $\mathcal{D}(FA, B)$ and $\mathcal{C}(A, GB)$.

- 1. Suppose given two functions $f:A\to B$ and $g:B\to A$ between sets A and B. Show that the two following properties are equivalent:
 - (i) f and g are bijections and $f = g^{-1}$
 - (ii) $\forall a \in A, \forall b \in B, \quad f(a) = b \quad \text{iff} \quad a = g(b)$
- 2. Conclude that an adjunction between two discrete categories is a bijection.

3 The exception monad

We write **pSet** for the category whose objects are *pointed sets*, i.e. pairs (A, a) where A is a set and $a \in A$, and morphisms $f: (A, a) \to (B, b)$ are functions such that f(a) = b. Here the distinguished element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor $U : \mathbf{pSet} \to \mathbf{Set}$ which to a pointed set associates the underlying set.

- 2. Construct a functor $F : \mathbf{Set} \to \mathbf{pSet}$ which is such that the sets $\mathrm{Hom}(FA, B)$ and $\mathrm{Hom}(A, UB)$ are isomorphic.
- 3. [Facultative] Show that the families of isomorphisms

$$\varphi_{A,B}: \operatorname{Hom}(FA,B) \to \operatorname{Hom}(A,UB)$$
 and $\psi_{A,B}: \operatorname{Hom}(A,UB) \to \operatorname{Hom}(FA,B)$

described in previous question are natural. By " $\varphi_{A,B}$ is natural", we mean here that for every morphisms $f: A \to A'$ in **Set** and $g: B \to B'$ in **pSet** the diagram

$$\operatorname{Hom}(FA',B) \xrightarrow{\phi_{A',B}} \operatorname{Hom}(A',UB)$$

$$g \circ - \circ F f \downarrow \qquad \qquad \downarrow Ug \circ - \circ f$$

$$\operatorname{Hom}(FA,B') \xrightarrow{\phi_{A,B'}} \operatorname{Hom}(A,UB')$$

commutes (in **Set**). Naturality of ψ is defined in a similar way.

4. We recall that a monad consists of an endofunctor $T: \mathcal{C} \to \mathcal{C}$ together with two natural transformations $\mu: T \circ T \Rightarrow T$ and $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow T$ such that the following diagrams commute:

$$T \circ T \circ T \xrightarrow{T\mu} T \circ T$$

$$\downarrow^{\mu} \downarrow^{\mu}$$

$$T \circ T \xrightarrow{\mu} T$$

$$T \xrightarrow{\text{id}_{T}} T \circ T \xrightarrow{\text{id}_{T}} T$$

Represent those diagrams using pasting diagrams in the 2-category Cat. Represent those diagrams using string diagrams.

- 5. Describe a structure of monad on $U \circ F$.
- 6. Given $f: A \to B$ an OCaml function which might raise an unique exception e and $g: B \to C$ a function which might raise an unique exception e', construct a function corresponding to the composite of f and g which might raise a unique exception e''.
- 7. We write \mathbf{Set}_T the category whose objects are the objects of \mathbf{Set} and morphisms $f: A \to B$ in \mathbf{Set}_T are morphisms $f: A \to TB$ in \mathbf{Set} . Compositions of two morphisms $f: A \to B$ and $g: B \to C$ in \mathbf{Set}_T is defined by $g \circ f = \mu_C \circ Tg \circ f$ and identities are $\mathrm{id}_A = \eta_A$. Show that the axioms of categories are satisfied.
- 8. Give an explicit description of \mathbf{Set}_T .
- 9. A non-deterministic function is a function that might return a set of values instead of a single value. How could we could we similarly define a category of non-deterministic functions by a Kleisli construction?

4 Free category on a graph

- 1. Define the forgetful functor $U : \mathbf{Cat} \to \mathbf{Graph}$.
- 2. Show that this functor $F: \mathbf{Graph} \to \mathbf{Cat}$ admits a left adjoint.