TD2 – Adjunctions

Samuel Mimram

October 9, 2017

1 Free monoids and categories

We write Mon for the category of monoids and morphisms of monoids.

- 1. Show that the forgetful functor $U: \mathbf{Mon} \to \mathbf{Set}$ admits a left adjoint $F: \mathbf{Set} \to \mathbf{Mon}$.
- 2. Show that the forgetful functor $U : \mathbf{Cat} \to \mathbf{Graph}$ admits a left adjoint $F : \mathbf{Graph} \to \mathbf{Cat}$.
- 3. Show that the forgetful functor $U: \mathbf{Top} \to \mathbf{Set}$ admits a left adjoint $F: \mathbf{Set} \to \mathbf{Top}$.
- 4. Show that the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$ admits a right adjoint $F : \mathbf{Set} \to \mathbf{Top}$.

2 Terminal objects and products by adjunctions

- 1. Given a category \mathcal{C} , show that the terminal functor $T : \mathcal{C} \to \mathbf{1}$ has a right (resp. left) adjoint iff the category \mathcal{C} admits a terminal (resp. initial) object.
- 2. Given a category C, describe the diagonal functor $\Delta : C \to C \times C$ and show that the category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a right (resp. left) adjoint.

3 Quantifiers as adjoints

Given a set X, we write $\mathcal{P}(X)$ for the associated powerset ordered by inclusion, which will be seen as a category. We can think of an element of $\mathcal{P}(X)$ as a predicate on X.

- 1. Explain how a function $f: X \to Y$ induces, by preimage, a functor $\Delta_f: \mathcal{P}(Y) \to \mathcal{P}(X)$.
- 2. Show that this functor admits a left adjoint $\exists_f : \mathcal{P}(X) \to \mathcal{P}(Y)$ and a right adjoint $\forall_f : \mathcal{P}(X) \to \mathcal{P}(Y)$.
- 3. Consider the function $f : \mathbb{N} \to \mathbb{B}$ where $\mathbb{B} = \{even, odd\}$ associating to a natural number its parity. What are the associated functions $\exists_f, \forall_f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{B})$?
- 4. Explain how these functors can be used to model existential and universal quantification on predicates.

4 Cartesian closed categories

A category is *cartesian closed* when for every object B, the functor $- \times B$ admits a right adjoint $B \Rightarrow -$.

1. Show that **Set** is cartesian closed.

5 The exception monad

We write **pSet** for the category whose objects are *pointed sets*, i.e. pairs (A, a) where A is a set and $a \in A$, and morphisms $f : (A, a) \to (B, b)$ are functions such that f(a) = b. Here the distinguished element of the pointed set will be seen as a particular value indicating an error or an exception.

- 1. Describe the *forgetful functor* $U : \mathbf{pSet} \to \mathbf{Set}$ which to a pointed set associates the underlying set.
- 2. Construct a functor $F : \mathbf{Set} \to \mathbf{pSet}$ which is such that the sets $\mathbf{pSet}(FA, B)$ and $\mathbf{Set}(A, UB)$ are isomorphic.
- 3. Show that the families of isomorphisms

 $\varphi_{A,B}$: **pSet**(*FA*, *B*) \rightarrow **Set**(*A*, *UB*) and $\psi_{A,B}$: **Set**(*A*, *UB*) \rightarrow **pSet**(*FA*, *B*)

described in previous question are natural. By " $\varphi_{A,B}$ is *natural*", we mean here that for every morphisms $f: A \to A'$ in **Set** and $h: B \to B'$ in **pSet** the diagram

commutes (in **Set**). Naturality of ψ is defined in a similar way.

4. We recall that a monad consists of an endofunctor $T : \mathcal{C} \to \mathcal{C}$ together with two natural transformations $\mu : T \circ T \Rightarrow T$ and $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow T$ such that the following diagrams commute:

$$\begin{array}{cccc} T \circ T \circ T \xrightarrow{T\mu} T \circ T & T & T \xrightarrow{\eta_T} T \circ T \xrightarrow{T\eta} T \\ \mu_T & & & \mu_T \\ T \circ T \xrightarrow{\mu} T & & & & T \end{array}$$

Represent those diagrams using pasting diagrams in the 2-category **Cat**. Represent those diagrams using string diagrams.

- 5. Describe a structure of monad on $U \circ F$.
- 6. Given $f: A \to B$ an OCaml function which might raise an unique exception e and $g: B \to C$ a function which might raise an unique exception e', construct a function corresponding to the composite of f and g which might raise a unique exception e''.
- 7. We write \mathbf{Set}_T the category whose objects are the objects of \mathbf{Set} and morphisms $f: A \to B$ in \mathbf{Set}_T are morphisms $f: A \to TB$ in \mathbf{Set} . Compositions of two morphisms $f: A \to B$ and $g: B \to C$ in \mathbf{Set}_T is defined by $g \circ f = \mu_C \circ Tg \circ f$ and identities are $\mathrm{id}_A = \eta_A$. Show that the axioms of categories are satisfied.
- 8. Give an explicit description of \mathbf{Set}_T .
- 9. A *non-deterministic function* is a function that might return a set of values instead of a single value. How could we could we similarly define a category of non-deterministic functions by a Kleisli construction?
- 10. Explain how the naturality condition of 3. is the usual naturality condition for φ seen as a natural transformation between the functors $\mathbf{pSet}(F-, -)$ and $\mathbf{Set}(-, U-)$ from $\mathbf{Set}^{\mathrm{op}} \times \mathbf{Set}$ to \mathbf{Set} .