
TD2 – Adjunctions

Samuel Mimram

October 9, 2017

1 Free monoids and categories

We write Mon for the category of monoids and morphisms of monoids.

1. Show that the forgetful functor U : Mon→ Set admits a left adjoint F : Set→Mon.

2. Show that the forgetful functor U : Cat→ Graph admits a left adjoint F : Graph→ Cat.

3. Show that the forgetful functor U : Top→ Set admits a left adjoint F : Set→ Top.

4. Show that the forgetful functor U : Top→ Set admits a right adjoint F : Set→ Top.

2 Terminal objects and products by adjunctions

1. Given a category C, show that the terminal functor T : C → 1 has a right (resp. left) adjoint
iff the category C admits a terminal (resp. initial) object.

2. Given a category C, describe the diagonal functor ∆ : C → C × C and show that the
category C admins cartesian products (resp. coproducts) iff the diagonal functor admits a
right (resp. left) adjoint.

3 Quantifiers as adjoints

Given a set X, we write P(X) for the associated powerset ordered by inclusion, which will be seen
as a category. We can think of an element of P(X) as a predicate on X.

1. Explain how a function f : X → Y induces, by preimage, a functor ∆f : P(Y )→ P(X).

2. Show that this functor admits a left adjoint ∃f : P(X) → P(Y ) and a right adjoint
∀f : P(X)→ P(Y ).

3. Consider the function f : N→ B where B = {even, odd} associating to a natural number its
parity. What are the associated functions ∃f ,∀f : P(N)→ P(B)?

4. Explain how these functors can be used to model existential and universal quantification on
predicates.

4 Cartesian closed categories

A category is cartesian closed when for every object B, the functor −×B admits a right adjoint
B ⇒ −.

1. Show that Set is cartesian closed.

1



5 The exception monad

We write pSet for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a ∈ A, and morphisms f : (A, a)→ (B, b) are functions such that f(a) = b. Here the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : pSet→ Set which to a pointed set associates the under-
lying set.

2. Construct a functor F : Set→ pSet which is such that the sets pSet(FA,B) and Set(A,UB)
are isomorphic.

3. Show that the families of isomorphisms

ϕA,B : pSet(FA,B)→ Set(A,UB) and ψA,B : Set(A,UB)→ pSet(FA,B)

described in previous question are natural. By “ϕA,B is natural”, we mean here that for
every morphisms f : A→ A′ in Set and h : B → B′ in pSet the diagram

pSet(FA′, B)

h◦−◦Ff
��

φA′,B // Set(A′, UB)

Uh◦−◦f
��

pSet(FA,B′)
φA,B′

// Set(A,UB′)

commutes (in Set). Naturality of ψ is defined in a similar way.

4. We recall that a monad consists of an endofunctor T : C → C together with two natural
transformations µ : T ◦ T ⇒ T and η : idC ⇒ T such that the following diagrams commute:

T ◦ T ◦ T
Tµ +3

µT

��

T ◦ T
µ

��
T ◦ T

µ
+3 T

T

idT �&

ηT +3 T ◦ T
µ

��

T
Tηks

idTx�
T

Represent those diagrams using pasting diagrams in the 2-category Cat. Represent those
diagrams using string diagrams.

5. Describe a structure of monad on U ◦ F .

6. Given f : A→ B an OCaml function which might raise an unique exception e and g : B → C
a function which might raise an unique exception e′, construct a function corresponding to
the composite of f and g which might raise a unique exception e′′.

7. We write SetT the category whose objects are the objects of Set and morphisms f : A→ B
in SetT are morphisms f : A → TB in Set. Compositions of two morphisms f : A → B
and g : B → C in SetT is defined by g ◦ f = µC ◦ Tg ◦ f and identities are idA = ηA. Show
that the axioms of categories are satisfied.

8. Give an explicit description of SetT .

9. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by
a Kleisli construction?

10. Explain how the naturality condition of 3. is the usual naturality condition for ϕ seen as a
natural transformation between the functors pSet(F−,−) and Set(−, U−) from Setop×Set
to Set.


	Free monoids and categories
	Terminal objects and products by adjunctions
	Quantifiers as adjoints
	Cartesian closed categories
	The exception monad

