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1 Equalizers and coequalizers

In this exercise, we study the notion of equalizer (called “égalisateur” in French) and
its dual notion of coequalizer. Suppose given a pair of coinitial and cofinal arrows

[g: X —=3Y
in a category ¥. An equalizer of f and g is an arrow m : F — X such that
fom=gom
and such that, for every arrow n: F — X such that
fon=gon
there exists a unique arrow h: F — E such that
n=moh.

§1. Show that every pair of functions f,¢g: X — Y has an equalizer m : £ — X in
the category Sets and describe this equalizer.

§2. Show that when it exists in a category %, the equalizer m : E — X of a pair of
arrows f,g: X — Y is a mono.

§3. Formulate the dual notion of coequalizer e : Y — () of two arrows

frg: X —=Y

in a category %.

§4. Show that when it exists in a category %, the coequalizer ¢ : Y — @ of two
arrows f,g: X — Y is an epi.

§5. Show that every pair of functions f,¢g : X — Y have a coequalizere: Y — @
in the category Sets and describe this coequalizer.

§6. One says that an epi ¢ : Y — Q is regular when there exists a pair of arrows
f,9: X — Y such that e is a coequalizer of f and g as in the diagram below:

f
X—=Y > Q
g

Show that every surjective function e : A — B is a regular epi in the category Sets.



2 Epi-mono factorization

An arrow f : A — B is orthogonal to an arrow ¢ : X — Y in a category ¥ when for
every pair of arrows u : A — X and v : B — Y making the diagram below commute

A— 5 X

f[ L

B ——Y
there exists a unique arrow h: B — X making the diagram below commute

A— 5 X

f h g
/
B——Y
in the sense that

u=hof and v=goh.

We write in that case

fLg
A factorisation system (€, M) is a pair of collections £ and M of arrows of the cate-
gory ¢ satisfying the three properties below:
A. every arrow

x -1y

of the category ¢ factors as

X U™ Y
where e € £ and m € M.

B. every arrow e € £ is orthogonal to every arrow m € M, what we write
1L M.

C. both collections £ and M are closed under composition and contain the isos.

The purpose of the exercise is to show that the category Sets is equipped with a fac-
torisation system (£, M) where £ and M are respectively the collections of surjective
and of injective functions.
§1. Show that every function
x Ly
factors as
X U™ Y

where e : X — U is a surjective function and m : U — Y is an injective function.



§2. Show that every surjective function e : A — B is orthogonal to every injective
function m : X — Y in the category Sets.

§3. Deduce from §1 and §2 that (£, M) defines a factorization system in Sets, where
& and M are respectively the collections of surjective and injective functions in Sets.

§4. Suppose given a category ¢ equipped with a factorization system (£, M) and a
commutative diagram

X —— U =Y
X5 U,y Y,

€2 ma

where e, e; € £ and mq, my € M. Show that there exists a unique arrow h : Uy — Us
making the diagram below commute:

X, —— U 40
u h v
l
Xo ——= U —— V2

in the category ¥.

§5. Suppose given a category ¥ whose collections £ of epis and M of monos define a
factorization system (£, M). Show that every arrow f : X — Y induces a subobject
(U,m) € Sub(Y) defined as the unique subobject of Y such that the arrow f : X - Y
factors as
X U Y

for a given epi e : X — U. Show that in the case of the category Sets, the construc-
tion associates to every function f : X — Y its image in the set Y. For that reason,
one often calls the subobject m : U — Y the image of the arrow f: X — Y.

§6. Suppose that we are still in the situation of §5. Show that every arrow f : A — B
of the category ¢ induces a monotone function

fx + Sub(4) — Sub(B)
which transports every subobject (U, m) to the image f. (U, m) of the composite arrow
v-"s 4158
using the notion of “image” of an arrow f om : U — B formulated in §5.

§7. Show that in the particular case ¥ = Sets, one associates in this way to every
function f : A — B the monotone function

f. . PA) — 2B

which transports every subset U C A to its image f(U) C B.



§8. Suppose that we are in the situation of §5 and that the category ¥ has moreover
pullbacks. We have seen in the previous TD that every arrow

f:A— B
induces in that case a monotone function
f* : Sub(B) — Sub(4)

defined by “pulling back” subobjects (V,n) € Sub(B) into subobjects (U, m) € Sub(A).
Show that the monotone function f, is left adjoint to f* in the sense that

fUm) <(Vin) <= (Um)< f'(V.n)
for every pair of subobjects (U, m) € Sub(A4) and (V,n) € Sub(B).

3 Application to first-order logic

Consider a family of sets X, ..., X,, and their cartesian productI' = X; x ... x X,.
As we will see in the course, every first-order formula ¢ with free variables x4, ..., z,
induces a subset

[¢] € T

consisting of all the elements (z1,...,z,) € ' satisfying the formula ¢. Note that the
interpretation [ ¢ ] of the formula ¢ can be also seen as an element of the powerset:

[¢] € 2@).
§1. Every set X induces a function
m:I'x X —T

defined by the first projection. Given a first-order formula ¢ with free variables
Z1,...,Ty,, Show that the subset

™[] = {(@1,...,zn,2) ET X X |@(z1,...,2,)}

coincides with the interpretation of the same formula ¢ seen as a formula with free
variables z1,...,7,, 2.

§2. Given a first-order formula ¢ with free variables z1, ..., z,,z and with interpre-
tation
[v] e 2(I' x X)
show that
ﬂ*[w] = {(w17...,xn)€l"|HxEX,w(xh...,xmx) }

coincides with the interpretation [3.cx ¢ ] of the formula 3, x ¥.
§3. From this, deduce that

[Feex V] <r [¢] <<= [¥]<rxx[¢]

where we write U <r V for the inclusion U C V between subsets U,V € Z(T).
Justify this equivalence from the point of view of first-order logic.



