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1 Equalizers and coequalizers
In this exercise, we study the notion of equalizer (called “égalisateur” in French) and
its dual notion of coequalizer. Suppose given a pair of coinitial and cofinal arrows

f, g : X Y

in a category C . An equalizer of f and g is an arrow m : E X such that

f ◦m = g ◦m

and such that, for every arrow n : F X such that

f ◦ n = g ◦ n

there exists a unique arrow h : F E such that

n = m ◦ h.

§1. Show that every pair of functions f, g : X −→ Y has an equalizer m : E −→ X in
the category Sets and describe this equalizer.

§2. Show that when it exists in a category C , the equalizer m : E −→ X of a pair of
arrows f, g : X −→ Y is a mono.

§3. Formulate the dual notion of coequalizer e : Y −→ Q of two arrows

f, g : X Y

in a category C .

§4. Show that when it exists in a category C , the coequalizer e : Y −→ Q of two
arrows f, g : X −→ Y is an epi.

§5. Show that every pair of functions f, g : X −→ Y have a coequalizer e : Y −→ Q
in the category Sets and describe this coequalizer.

§6. One says that an epi e : Y −→ Q is regular when there exists a pair of arrows
f, g : X −→ Y such that e is a coequalizer of f and g as in the diagram below:

X Y Q
f

g

e

Show that every surjective function e : A −→ B is a regular epi in the category Sets.
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2 Epi-mono factorization
An arrow f : A → B is orthogonal to an arrow g : X → Y in a category C when for
every pair of arrows u : A→ X and v : B → Y making the diagram below commute

A X

B Y

f

u

g

v

there exists a unique arrow h : B X making the diagram below commute

A X

B Y

f

u

g

v

h

in the sense that
u = h ◦ f and v = g ◦ h.

We write in that case
f ⊥ g.

A factorisation system (E ,M) is a pair of collections E andM of arrows of the cate-
gory C satisfying the three properties below:

A. every arrow

X Y
f

of the category C factors as

X U Y
e m

where e ∈ E and m ∈M.

B. every arrow e ∈ E is orthogonal to every arrow m ∈M, what we write

E ⊥M.

C. both collections E andM are closed under composition and contain the isos.

The purpose of the exercise is to show that the category Sets is equipped with a fac-
torisation system (E ,M) where E andM are respectively the collections of surjective
and of injective functions.

§1. Show that every function

X Y
f

factors as
X U Y

e m

where e : X −→ U is a surjective function and m : U −→ Y is an injective function.
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§2. Show that every surjective function e : A → B is orthogonal to every injective
function m : X → Y in the category Sets.

§3. Deduce from §1 and §2 that (E ,M) defines a factorization system in Sets, where
E andM are respectively the collections of surjective and injective functions in Sets.

§4. Suppose given a category C equipped with a factorization system (E ,M) and a
commutative diagram

X1 U1 Y1

X2 U2 Y2

u

e1 m1

v

e2 m2

where e1, e2 ∈ E and m1,m2 ∈M. Show that there exists a unique arrow h : U1 → U2
making the diagram below commute:

X1 U1 Y1

X2 U2 Y2

u

e1 m1

h v

e2 m2

in the category C .

§5. Suppose given a category C whose collections E of epis andM of monos define a
factorization system (E ,M). Show that every arrow f : X → Y induces a subobject
(U,m) ∈ Sub(Y ) defined as the unique subobject of Y such that the arrow f : X → Y
factors as

X U Y
e m

for a given epi e : X → U . Show that in the case of the category Sets, the construc-
tion associates to every function f : X → Y its image in the set Y . For that reason,
one often calls the subobject m : U → Y the image of the arrow f : X → Y .

§6. Suppose that we are still in the situation of §5. Show that every arrow f : A→ B
of the category C induces a monotone function

f∗ : Sub(A) −→ Sub(B)

which transports every subobject (U,m) to the image f∗(U,m) of the composite arrow

U A B
m f

using the notion of “image” of an arrow f ◦m : U → B formulated in §5.

§7. Show that in the particular case C = Sets, one associates in this way to every
function f : A→ B the monotone function

f∗ : P(A) −→ P(B)

which transports every subset U ⊆ A to its image f(U) ⊆ B.
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§8. Suppose that we are in the situation of §5 and that the category C has moreover
pullbacks. We have seen in the previous TD that every arrow

f : A B

induces in that case a monotone function

f∗ : Sub(B) −→ Sub(A)

defined by “pulling back” subobjects (V, n) ∈ Sub(B) into subobjects (U,m) ∈ Sub(A).
Show that the monotone function f∗ is left adjoint to f∗ in the sense that

f∗(U,m) ≤ (V, n) ⇐⇒ (U,m) ≤ f∗(V, n)

for every pair of subobjects (U,m) ∈ Sub(A) and (V, n) ∈ Sub(B).

3 Application to first-order logic
Consider a family of sets X1, . . . , Xn and their cartesian product Γ = X1 × . . .×Xn.
As we will see in the course, every first-order formula ϕwith free variables x1, . . . , xn

induces a subset
[ϕ ] ⊆ Γ

consisting of all the elements (x1, . . . , xn) ∈ Γ satisfying the formula ϕ. Note that the
interpretation [ϕ ] of the formula ϕ can be also seen as an element of the powerset:

[ϕ ] ∈ P(Γ).

§1. Every set X induces a function

π : Γ×X −→ Γ

defined by the first projection. Given a first-order formula ϕ with free variables
x1, . . . , xn, show that the subset

π∗[ϕ ] = {(x1, . . . , xn, x) ∈ Γ×X |ϕ(x1, . . . , xn)}

coincides with the interpretation of the same formula ϕ seen as a formula with free
variables x1, . . . , xn, x.

§2. Given a first-order formula ψ with free variables x1, . . . , xn, x and with interpre-
tation

[ψ ] ∈P(Γ×X)
show that

π∗[ψ ] = { (x1, . . . , xn) ∈ Γ | ∃x ∈ X,ψ(x1, . . . , xn, x) }.

coincides with the interpretation [ ∃x∈X ψ ] of the formula ∃x∈X ψ.

§3. From this, deduce that

[ ∃x∈X ψ ] ≤Γ [ϕ ] ⇐⇒ [ψ ] ≤Γ×X [ϕ ]

where we write U ≤Γ V for the inclusion U ⊆ V between subsets U, V ∈ P(Γ).
Justify this equivalence from the point of view of first-order logic.
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