TD7 – Limits, presheaf categories

Samuel Mimram

19 December 2013

1 Limits

Suppose given a functor $F: \mathcal{C} \to \mathcal{D}$ and D and object of \mathcal{D} . An universal arrow from D to F is given by a pair (C, f) where C is an object of \mathcal{C} and $f: D \to FC$ is a morphism in \mathcal{D} such that for every other such pair (C', f') with $f': D \to FC'$, there exists a unique morphism $g: C \to C'$ of \mathcal{C} such that $Fg \circ f = f'$.

1. Suppose that $U: \mathcal{D} \to \mathcal{C}$ is a functor admitting a left adjoint $F: \mathcal{C} \to \mathcal{D}$. Show that for every object C of \mathcal{C} , (FC, η_C) is a universal arrow from C to U.

Suppose given two categories \mathcal{J} and \mathcal{C} . The diagonal functor $\Delta: \mathcal{C} \to \mathcal{C}^{\mathcal{J}}$ is such that

- given $C \in \mathcal{C}$, $\Delta(C)$ sends every object of \mathcal{J} to C and every morphism of \mathcal{J} to id_C ,
- given $f: C \to D \in \mathcal{C}$, $\Delta(f)$ is the natural transformation whose components are f.

The *colimit* of a functor $F: \mathcal{J} \to \mathcal{C}$ is a universal arrow from F to Δ .

- 2. What is the colimit of a functor F in the case where \mathcal{J} is the category with two objects and their respective identities?
- 3. What is the colimit of a functor F in the case where \mathcal{J} is the empty category?
- 4. Express the notion of pushout as a colimit.
- 5. Show that any graph can be obtained as the colimit of a functor $F: \mathcal{J} \to \mathbf{Graph}$ such that the image of an object is either G_0 (the graph with one vertex and no edge) or G_1 (the graph with two vertices and one edge between them).
- 6. Explain the dual notion of limit.
- 7. Show that a left adjoint preserves colimits.
- 8. Show that in a cartesian closed category with finite colimits, we have

$$A\Rightarrow (B\times C)\cong (A\Rightarrow B)\times (A\Rightarrow C) \qquad \text{and} \qquad A\times (B+C)\cong (A\times B)+(A\times C)$$

2 Simplicial sets

We write Δ for the category with \mathbb{N} as objects and whose morphisms $f: m \to n$ are weakly increasing functions $f: [m] \to [n]$ where $[n] = \{0, 1, \dots, n-1\}$.

1. Show that Δ is generated, as a category, by the morphisms

$$\eta_i^n: n \to n+1$$
 and $\mu_i^n: n+2 \to n+1$

(with $0 \le i \le n$) defined by

$$\eta_i^n(k) = \begin{cases} k & \text{if } k < i \\ k+1 & \text{otherwise} \end{cases} \quad \text{and} \quad \mu_i^n(k) = \begin{cases} k & \text{if } k \leq i \\ k-1 & \text{otherwise} \end{cases}$$

2. Find out the right members of the following equations satisfied by those morphisms:

$$\eta_{j}^{n+1} \circ \eta_{i}^{n} = ? \qquad \qquad \mu_{j}^{n+1} \circ \mu_{i}^{n+2} = ? \qquad \qquad \mu_{j}^{n+1} \circ \eta_{i}^{n+1} = ?$$

- 3. [Optional] Deduce a presentation of Δ as a category.
- 4. The standard n-simplex Δ_n is the subspace of the euclidian space \mathbb{R}^n whose points are

$$\Delta_n = \left\{ (x_1, \dots, x_n) \mid x_i \ge 0 \text{ and } \sum_i x_i = 1 \right\}$$

We write Δ_+ for the full subcategory of Δ whose objects are strictly positive integers. Provide a geometrical interpretation of functors $\phi: \Delta_+^{\text{op}} \to \mathbf{Set}$, which are called *simplicial sets*, by considering elements of $\phi(n)$ as standard *n*-simplices and morphisms $\phi(\varepsilon_i^n)$ as describing faces. What is the geometrical interpretation of $\phi(\eta_i^n)$? What is the geometrical interpretation of the above equations?

5. Give a description as simplicial sets of an empty square, a filled square, a (empty or filled) cube, a torus, a Möbius strip, etc.

3 Presheaf categories as free cocompletions

We recall that the category of presheaves $\hat{\mathcal{C}}$ over a category \mathcal{C} is the category of functors $\mathcal{C}^{op} \to \mathbf{Set}$ and natural transformations between them.

- 1. The Yoneda embedding $y: \mathcal{C} \to \hat{\mathcal{C}}$ is defined on objects $A \in \mathcal{C}$ by $yA = \mathcal{C}(-, A)$. Make completely explicit the definition of this functor.
- 2. [Yoneda lemma] Show that for every $A \in \mathcal{C}$ and $P \in \hat{\mathcal{C}}$, $\hat{\mathcal{C}}(yA, P) \cong P(A)$. Hint: show that $\phi \in \mathcal{C}(yA, P)$ is determined by $\phi_A(\mathrm{id}_A)$.
- 3. Deduce that the Yoneda embedding is full and faithful.
- 4. What is the Yoneda embedding of the objects in the case of graphs and simplicial sets?
- 5. What are products, coproducts, pushouts, pullbacks, etc. in the category of graphs?
- 6. Explain why every presheaf category is complete and cocomplete (assuming this for **Set**).
- 7. Describe a functor $I: \Delta \to \mathbf{Top}$ sending n to the canonical n-simplex.
- 8. Use this functor in order to build a nerve functor N_I : $\mathbf{Top} \to \hat{\Delta}$ associating to every topological space a simplicial set.

To any presheaf $P \in \hat{\mathcal{C}}$, we can associate a category of elements whose

- objects are pairs (A, a) with $A \in \mathcal{C}$ and $a \in P(A)$,
- and morphisms $f:(A,a)\to (B,b)$ are morphisms $f:A\to B$ of $\mathcal C$ such that P(f)(b)=a.

We write $\pi_P : \mathrm{El}(P) \to \mathcal{C}$ for the first projection functor. We define the geometric realization functor by

$$R_I(P) = \operatorname{colim}(\operatorname{El}(P) \xrightarrow{\pi_P} \Delta \xrightarrow{I} \operatorname{Top})$$

- 8. Compute the geometric realization of a simple simplicial set (y3 for instance).
- 9. Show that R_I is left adjoint to N_I .
- 10. Notice that the above proofs could be generalized to any functor $I: \mathcal{C} \to \mathcal{D}$ with \mathcal{D} cocomplete and deduce that any presheaf $P \in \hat{\mathcal{C}}$ is canonically a colimit of representables:

$$P = \operatorname{colim}(\operatorname{El}(P) \xrightarrow{\pi_P} \mathcal{C} \xrightarrow{y} \hat{\mathcal{C}})$$

We admit the following result: given a adjunction, the right adjoint is full and faithful if and only if the counit is an isomorphism.

11. Show that \hat{C} is the free cocompletion of C: given a functor $F: C \to D$, there exists a unique cocontinuous functor $G: \hat{C} \to D$ such that $G \circ y = F$.