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We recall the rules of the simply-typed λ-calculus:

Γ, x : A,Γ′ ⊢ x : A
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⇒ B
(⇒I)

Γ ⊢ t : A ⇒ B Γ ⊢ u : A

Γ ⊢ tu : B
(⇒E)

where, in the first rule, we suppose x ̸∈ dom(Γ′). Our goal is to show that every typable term t (in an arbitrary
context) is strongly normalizable, meaning that there is no infinite reduction from t.

1. Can we show the property by induction on the derivation of the typing of t?

Solution. No, in the third rule we cannot show that if t and u are SN then tu also is, because a reduction
in tu is not necessarily a reduction in t or a reduction in u (take t = u = λx.xx).

I Weak normalization

We first want to show that every typable term t (in an arbitrary context) is weakly normalizable, meaning that a
typable term can reduce to a normal form. We write t → t′ for a reduction in the call-by-value strategy defined
by

t → t′

t u → t′ u

u → u′

(λx.t)u → (λx.t)u′ (λx.t)(λy.u) → t[λy.u/x]

1. Show that the reduction strategy is deterministic, meaning t → t1 and t → t2 implies t1 = t2.

Solution. We notice that a term of the form λx.t can never be reduced (because there is no rule to do
so). In a term reducible by the first rule t is therefore not an abstraction, and the two other rules cannot
apply. Similarly, in a term reducible by the second rule, u is not an abstraction and the third rule cannot
apply. Thus at most one rule applies and the strategy is deterministic.

2. For such a strategy is there a difference between weak and strong normalization?

Solution. No, by determinism, there exists a path to a normal form if and only if every path ends on a
normal form.

We define the set R(A) of reducible terms of type A by induction by

• for A atomic, R(A) is the set of normalizing closed terms of type A,

• for A and B types, R(A ⇒ B) is the set of normalizing closed terms t of type A ⇒ B such that tu ∈ R(B)
for every term u ∈ R(A).

Here, normalizing is always understood with respect to the normal order strategy.

3. Show that given terms t and t′ such that t → t′, show that t is normalizing if and only if t′ is normalizing.

Solution. Immediate by determinism of the reduction strategy.

4. Show the property (CR1): if t ∈ R(A) then t is normalizing.

Solution. Immediate by induction on the type A.

5. Show the property (CR2): if t ∈ R(A) and t → t′ then t′ ∈ R(A).

Solution. By induction on A.

• For atomic types, we conclude using question 3 and subject reduction.
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• Suppose t ∈ R(A ⇒ B) and t → t′. By question 3, t′ is normalizing and by subject reduction t′

has type A. Given u ∈ R(A), we have tu ∈ R(B) and tu → t′u (because the strategy is CBV) thus
t′u ∈ R(B) by induction hypothesis. Thus t′ ∈ R(A ⇒ B).

6. Show the property (CR3): if t has type A, t → t′ and t′ ∈ R(A) then t ∈ R(A).

Solution. By induction on A.

• For atomic types, we conclude using question 3 again.

• Suppose t → t′ with t′ ∈ R(A ⇒ B). Given u ∈ R(A), we have t′u ∈ R(B) and tu → t′u (because
the strategy is CBV) thus tu ∈ R(B) by induction hypothesis. Thus t ∈ R(A ⇒ B).

7. Suppose that x1 : A1, . . . , xn : An ⊢ t : A is derivable. Show that for all u1 ∈ R(A1), . . . , un ∈ R(An), we
have t[u1/x1, . . . , un/xn] ∈ R(A).

Solution. By induction on the derivation of Γ ⊢ t : A. We write R(Γ) = R(A1)× . . .×R(An). We write
u instead of u1, . . . , un.

• If the last rule is

Γ, x : A,Γ′ ⊢ x : A

the result is immediate.

• If the last rule is
Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⇒ B

Suppose given u ∈ R(Γ) and u ∈ R(A). By (CR1), we have u
∗→ û for some normal term û,

and, by (CR2), we have û ∈ R(A). We have (λx.t)u
∗→ (λx.t)û → t[û/x] (because the strategy is

CBV), thus ((λx.t)u)[u/x] → t[u/x, û/x] and, by induction hypothesis, t[u/x, û/x] ∈ R(B). Thus
((λx.t)u)[u/x] ∈ R(B) by (CR3). We conclude that (λx.t)[u/x] ∈ R(A → B).

• If the last rule is
Γ ⊢ t : A ⇒ B Γ ⊢ u : A

Γ ⊢ tu : B

Given u ∈ R(Γ), we have, by induction hypothesis, t[u/x] ∈ R(A ⇒ B) and u[u/x] ∈ R(A) and thus
t[u/x]u[u/x] ∈ R(B), i.e. (tu)[u/x] ∈ R(B).

8. Show that any typable closed term t is normalizable.

Solution. Given a typable term t, we have that ⊢ t : A is derivable, thus t ∈ R(A) by previous question.

9. Show that typable λ-terms are weakly normalizable.

Solution. Given a typable term t, we have t ∈ R(A) by previous question, and thus t is normalizable wrt
the normal order strategy, i.e. t is weakly normalizable.

10. Show that there are non-typable λ-terms.

Solution. Ω is not weakly normalizable and thus not typable.

11. Show that R(A) is, in fact, the set of closed terms of type A.

Solution. By definition of R(A), it contains only closed terms of type A. Conversely, given a closed term
of type A, we have that t ∈ R(A) by question 7.

II Strong normalization

We now turn to strong normalization. In the course of the proof, will need the following well-founded induction
principle.
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1. Suppose given a set X equipped with a binary relation → which is well-founded : there is no infinite
sequence of reductions. Suppose given a property P on the elements of X such that, for every t ∈ X, we
have

∀t ∈ X. ((∀t′ ∈ X. t → t′ ⇒ P (t′)) ⇒ P (t))

Show that ∀t ∈ X. P (t) holds. How can we recover recurrence as a particular case of this?

Solution. By absurd, if there exists t0 such that ¬P (t0), then there exists t1 such that t0 → t1 and ¬P (t1).
Going on in this way, we construct an infinite sequence t0 → t1 → t2 → . . . such that ¬P (ti) for every
index i, which is absurd.

A term t is neutral when no new redex is created when applied to another term u (all the redexes in tu are
either in t or in u).

2. Give an explicit description of neutral terms.

Solution. A term is neutral when it is not an abstraction.

We define R(A), the reducible terms of type A, by induction by

• R(A), for A atomic, is the set of strongly normalizable terms,

• R(A ⇒ B) is the set of terms t such that tu ∈ R(B) for every u ∈ R(A).

We are going to show that following conditions hold:

(CR1) if t ∈ R(A) then t is strongly normalizable,

(CR2) if t ∈ R(A) and t → t′ then t′ ∈ R(A),

(CR3) if t is neutral and for every t′ such that t → t′ we have t′ ∈ R(A) then t ∈ R(A).

3. Show that these conditions imply that a variable x belongs to R(A) for every type A.

Solution. By (CR3).

4. Show that if t is strongly normalizable and t → t′ then t′ is also strongly normalizable. Does the converse
hold?

Solution. If there was an infinite sequence of reductions starting from t′, there would also be one starting
from t which is supposed to be SN.

5. Show the conditions (CR1), (CR2) and (CR3) by induction on A.

Solution. We simultaneously show the three conditions by induction on A.

• Case of an atomic type A.

(CR1) Obvious.

(CR2) If t is SN and t → t′ then t′ is also SN by previous question.

(CR3) Suppose that t is neutral and all its reductions are reducible and thus SN. Then t must be SN.

• Case of A ⇒ B.

(CR1) Suppose t ∈ R(A ⇒ B). A variable x is neutral and normal and thus in R(A). Thus tx ∈ R(B).
An infinite reduction from t would induce one from tx, which is impossible by (CR1) on B.

(CR2) Suppose t ∈ R(A ⇒ B) and t → t′. Given u ∈ R(A), we have tu ∈ R(B) and thus t′u ∈ R(B)
by (CR2) on B since tu → t′u. Thus t′ ∈ R(A ⇒ B).

(CR3) Suppose t neutral and t′ ∈ R(A ⇒ B) for every t′ such that t → t′. Fix u ∈ R(A). In order to
show that tu ∈ R(B), and thus conclude that t ∈ R(A → B), we use (CR3) on B: it is enough
to show that if tu → v then v ∈ R(B). Since t is neutral, there are two possible reductions
starting from tu.

∗ tu → t′u (with t → t′). Then t′u ∈ R(B) because t′ ∈ R(B) by hypothesis.

∗ tu → tu′ (with u → u′). Then u′ ∈ R(A) by (CR2) and thus tu′ ∈ R(B) (we reason by
well-founded induction on u).

6. Suppose that t[u/x] ∈ R(B) for every u ∈ R(A). Show that λx.t ∈ R(A ⇒ B).

Solution. We have to show that, for u ∈ R(A), we have (λx.t)u ∈ R(B). Since x is R(A), we have
t = t[x/x] in R(B) and thus both t and u are SN by (CR1). We can reason by induction on the pair (t, u).
The term (λx.t)u can reduce to
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• t[u/x] which is in R(B) by general hypothesis,

• (λx.t′)u with t → t′, which is in R(B) by induction hypothesis,

• (λx.t)u′ with u → u′, which is in R(B) by induction hypothesis.

Since (λx.t)u can only reduce to terms in R(B), it is in R(B) by (CR3).

7. Suppose that x1 : A1, . . . , xn : An ⊢ t : A is derivable. Show that for all u1 ∈ R(A1), . . . , un ∈ R(An), we
have t[u1/x1, . . . , un/xn] ∈ R(A).

Solution. Same as in previous part.

8. Show that Γ ⊢ t : A derivable implies t ∈ R(A).

Solution. We have xi ∈ R(Ai) and thus, by previous question t = t[x/x] ∈ R(A).

9. Show that all typable terms are strongly normalizable.

Solution. Every typable term is reducible and thus SN by (CR1).

10. Use this to show that typable terms are confluent.

Solution. We can show that the λ-calculus is locally confluent and deduce SN by Newman’s lemma.
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