Monads

Samuel Mimram samuel.mimram@lix.polytechnique.fr http://lambdacat.mimram.fr

December 7, 2020

1 The exception monad

Given an adjunction $F \dashv G$ between categories C and D, the composite $T = G \circ F$ is always equipped with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write \mathbf{Set}_* for the category whose objects are *pointed sets*, i.e. pairs (A, a) where A is a set and $a \in A$, and morphisms $f : (A, a) \to (B, b)$ are functions such that f(a) = b. Here, the distinguished element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor $U : \mathbf{Set}_* \to \mathbf{Set}$.

Solution. The functor U sends a pointed set (A, a) to the underlying set A and a pointed function to the function itself.

2. Construct a functor $F : \mathbf{Set} \to \mathbf{Set}_*$ which is such that the sets $\mathbf{Set}_*(FA, (B, b))$ and $\mathbf{Set}(A, U(B, b))$ are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

Solution. We define the functor F as $FA = (A \sqcup \{\star\}, \star)$ and, given $f : A \to B$,

$$Ff: FA \to FB$$
$$A \ni a \mapsto f(a)$$
$$\star \mapsto \star$$

Let us construct the bijection:

- given a pointed function $f: A \sqcup \{\star\} \to B$ we obtain a function $\phi(f): A \to B$ by precomposing by the canonical inclusion $\iota: A \to A \sqcup \{\star\}$:

$$\phi(f) = f \circ \iota$$

- given a function $f: A \to B$, we obtain a pointed function $\psi(f): A \sqcup \{\star\} \to (B, b)$ by

$$\psi(f): A \sqcup \{\star\} \to B$$
$$A \ni a \mapsto f(a)$$
$$\star \mapsto b$$

The two are easily shown to be mutually inverse. Namely, given a pointed function $f: A \sqcup \{\star\} \to B$, we have for $a \in A$

$$\psi(\phi(f))(a) = \psi(f \circ \iota)(a) = f \circ \iota(a) = f(a) \qquad \qquad \psi(\phi(f))(\star) = b$$

and thus $\psi(\phi(f)) = f$ because f is pointed. Conversely, given a function $f : A \to B$, we have for $a \in A$,

$$\phi(\psi(f))(a) = \psi(f) \circ \iota(a) = f(a)$$

3. We recall that a *monad* consists of an endofunctor $T : \mathcal{C} \to \mathcal{C}$ together with two natural transformations $\mu : T \circ T \Rightarrow T$ and $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow T$ such that the following diagrams commute:

Describe a structure of monad on $T = U \circ F$.

Solution. We have $TA = A \sqcup \{\star\}$. We write $TTA = A \sqcup \{\star, \star'\}$ to distinguish between the two added fresh elements. We define the natural transformations

$$\eta_A: A \to TA$$
 $\mu_A: TTA \to TA$

by η_A is the canonical inclusion and

$$\mu_A : A \sqcup \{\star, \star'\} \to A \sqcup \{\star\}$$
$$A \ni a \mapsto a$$
$$\star \mapsto \star$$
$$\star' \mapsto \star$$

The family $(\eta_A)_{A \in \mathbf{Set}}$ is natural: given a function $f : A \to B$, we have

$$\begin{array}{ccc} A & \xrightarrow{\eta_A} & A \sqcup \{\star\} \\ f & & \downarrow f \sqcup \{\star\} \\ B & \xrightarrow{\eta_B} & B \sqcup \{\star\} \end{array}$$

since both morphisms send an element $a \in A$ to $f(a) \in B \sqcup \{\star\}$, and similarly for $(\mu_A)_{A \in \mathbf{Set}}$. Finally, we can check that the laws for monads are satisfied. Graphically, the associativity law is

and unit laws are

4. Explain how a function $A \to TB$ can be seen as "a function $A \to B$ which might raise an exception".

Solution. A function $f : A \to B \sqcup \{\star\}$ can be seen as a function $f : A \to B$ which raises an exception when its image is \star .

5. Given $f : A \to B$ an OCaml function which might raise an unique exception e and $g : B \to C$ a function which might raise an unique exception e', construct a function corresponding to the composite of f and g which might raise a unique exception e''.

Solution. We define the function

```
let comp f g x =
   try g (f x)
   with
      | E -> raise E''
      | E' -> raise E''
```

whose type is

('a -> 'b) -> ('b -> 'c) -> ('a -> 'c)

6. Given an arbitrary monad T on a category C, we write C_T for the category whose objects are the objects of C and morphisms $f : A \to B$ in C_T are morphisms $f : A \to TB$ in C, called the *Kleisli* category associated to T. Define composition and identities and show that the axioms of categories are satisfied.

Solution. Given two morphism $f : A \to B$ and $g : B \to C$ in \mathcal{C}_T , i.e. morphisms $f : A \to TB$ and $g : B \to TC$ in \mathcal{C} , we define composition as

$$A \xrightarrow{f} TB \xrightarrow{Tg} TTC \xrightarrow{\mu_C} TC$$

We define the identity $A \to TA$ to be η_A . Given $f : A \to B$ in \mathcal{C}_T , we can check that identity is a neutral element on the left $(f \circ id_A = f)$:

$$\begin{array}{ccc} TA & \xrightarrow{Tf} & TTB & \xrightarrow{\mu_B} & TB \\ \eta_A \uparrow & & \eta_{TB} \uparrow & & & \\ A & \xrightarrow{f} & TB & & \\ \end{array}$$

and on the right $(id_B \circ f = f)$:

$$A \xrightarrow{f} TB \xrightarrow{T\eta_B} TB \xrightarrow{\mu_B} TB$$

and that composition is associative $(h \circ (g \circ f) = (h \circ g) \circ f)$: given $f : A \to TB$, $g : B \to TC$ and $h : C \to TD$, the composite $h \circ (g \circ f)$ is

$$A \xrightarrow{f} TB \xrightarrow{Tg} TTC \xrightarrow{\mu_C} TC \xrightarrow{Th} TTD \xrightarrow{\mu_D} TD$$

On the other side, the composite is slightly more complicated: we first compute the composite $h \circ g$

$$B \xrightarrow{g} TC \xrightarrow{Th} TTD \xrightarrow{\mu_D} TD$$

and thus the composite $(h \circ g) \circ f$ is

$$A \xrightarrow{f} TB \xrightarrow{Tg} TTC \xrightarrow{TTh} TTTD \xrightarrow{T\mu_D} TTD \xrightarrow{\mu_D} TD$$

and we have

$$A \xrightarrow{f} TB \xrightarrow{Tg} TTC \xrightarrow{TTh} TTTD \xrightarrow{T\mu_D} TTD$$
$$\downarrow^{\mu_C} \qquad \qquad \downarrow^{\mu_{TD}} \qquad \downarrow^{\mu_D}$$
$$TC \xrightarrow{Th} TTD \xrightarrow{\mu_D} TD$$

7. Give an explicit description of \mathbf{Set}_T in the case of the above exception monad.

Solution. Graphically the composition of $f: A \to B \sqcup \{\star\}$ and $g: B \to C \sqcup \{\star\}$ performs as follows:

which is precisely the expected composition. The category \mathbf{Set}_T can equivalently be described as the category of sets and partial functions.

2 More monads

1. A *non-deterministic function* is a function that might return a set of values instead of a single value. How could we could we similarly define a category of non-deterministic functions by a Kleisli construction?

Solution. For non-determinism, we want to take $\mathcal{P} : \mathbf{Set} \to \mathbf{Set}$ which to a set A associates the power set (= the set of subsets).

2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

Solution. In a CCC C, we have for every object B the following adjunction:

$$\mathcal{C} \xrightarrow[Barrow]{-\times B}{} \mathcal{C}$$

i.e. for every objects A and C, we have a natural bijection

$$\mathcal{C}(A \times B, C) \simeq \mathcal{C}(A, B \Rightarrow C)$$

Fixing an object S, the induced monad is $S \Rightarrow (S \times A)$ which is called the "state monad". Namely, TA can be seen as A which takes a state S as input and returns a modified state as output. A morphism $f: A \rightarrow B$ in the Kleisli category is a morphism in

$$\mathcal{C}(A, S \Rightarrow (S \times B))$$

which, by the adjunction is the same as a morphism in

$$\mathcal{C}(S \times A, S \times B)$$

and it can be checked that the composition is the expected one, which "passes on the state".

3 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures, which is captured by the Monad class. All common monads are members of it:

```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  return :: a -> m a
```

In addition to implementing the class functions, all instances of Monad should obey the following equations:

return a >>= k = k a m >>= return = m $m >>= (\x -> k x >>= h) = (m >>= k) >>= h$

1. What does the Maybe monad defined below do?

```
data Maybe a = Nothing | Just a
instance Monad Maybe where
  return = Just
  Nothing >>= f = Nothing
  (Just x) >>= f = f x
```

Solution. This is the exception monad.

2. What does the List monad defined below do?

```
instance Monad [] where
  m >>= f = concatMap f m
  return x = [x]
```

Solution. This is the non-determinism monad.

- A Kleisli triple $(T, \eta, (-)^*)$ on a category \mathcal{C} consists of
 - a function $T : \mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{C})$,
 - a function $\eta_A : A \to TA$ for every object A of \mathcal{C} ,
 - a morphism $f^*: TA \to TB$ for every morphism $f: A \to TB$,

such that for every objects A, B, C and morphisms $f: A \to TB$ and $g: B \to TC$,

$$\eta_A^* = \mathrm{id}_{TA} \qquad \qquad f^* \circ \eta_A = f \qquad \qquad g^* \circ f^* = (g^* \circ f)^*$$

Our aim is to show that this data amounts to specify a monad on \mathcal{C} .

3. Construct the Kleisli category associated to a Kleisli triple.

Solution. We construct the category C_T whose objects are the same as those of C and morphisms $f: A \to B$ in C_T are morphisms $f: A \to TB$ in C. Identities are given by η . The composition of $f: A \to TB$ and $g: B \to TC$ is

$$g^* \circ f$$

We can check that composition is associative:

$$(h^* \circ g)^* \circ f = h^* \circ g^* \circ f$$

and admits identities as neutral elements:

$$\eta_B^* \circ f = \mathrm{id}_{TB} \circ f = f \qquad \qquad f^* \circ \eta_A = f$$

4. Show that every Kleisli triple induces a monad.

Solution. Suppose given a triple $(T, \eta, (-)^*)$, we extend T as a functor by defining, for every morphism $f: A \to B$,

$$Tf = (\eta_B \circ f)^*$$

This is indeed a functor since, given $g: B \to C$, we have

$$Tg \circ Tf = (\eta_C \circ g)^* \circ (\eta_B \circ f)^* = ((\eta_C \circ g)^* \circ \eta_B \circ f)^* = (\eta_C \circ g \circ f)^* = T(g \circ f)$$

and

$$Tid_A = (\eta_A \circ id_A)^* = \eta_A^* = id_{TA}$$

We take η as unit of the monad and define the multiplication by

$$\mu_A = \mathrm{id}_{TA}^*$$

The family $(\eta_A)_{A \in \mathcal{C}}$ is natural, i.e.

$$\begin{array}{ccc} A & \xrightarrow{\eta_A} & TA \\ f \downarrow & & \downarrow^{Tf} \\ B & \xrightarrow{\eta_B} & TB \end{array}$$

since, for $f: A \to B$, we have

$$Tf \circ \eta_A = (\eta_B \circ f)^* \circ \eta_A = \eta_B \circ f$$

and similarly for $(\mu_A)_{A \in \mathcal{C}}$,

$$\begin{array}{ccc} TTA & \stackrel{\mu_A}{\longrightarrow} TA \\ TTf & & \downarrow^{Tf} \\ TTB & \stackrel{\mu_B}{\longrightarrow} TB \end{array}$$

we have

 $\mu_B \circ TTf = \mathrm{id}_{TB}^* \circ (\eta_{TB} \circ (\eta_B \circ f)^*)^* = (\mathrm{id}_{TB}^* \circ \eta_{TB} \circ (\eta_B \circ f)^*)^* = (\mathrm{id}_{TB} \circ (\eta_B \circ f)^*)^* = (\eta_B \circ f)^{**}$ and on the other side

$$Tf \circ \mu_A = (\eta_B \circ f)^* \circ \operatorname{id}_{TA}^* = ((\eta_B \circ f)^* \circ \operatorname{id}_{TA})^* = (\eta_B \circ f)^{**}$$

Finally, we can check that the laws for monads are satisfied: we have

$$\begin{array}{ccc} TTTTA & \xrightarrow{T\mu_A} & TTA \\ \mu_{TA} & & & \downarrow \mu_A \\ TTA & \xrightarrow{\mu_A} & TA \end{array}$$

since

$$\mu_A \circ T\mu_A = \mathrm{id}_{TA}^* \circ (\eta_{TA} \circ \mathrm{id}_{TA}^*)^* = (\mathrm{id}_{TA}^* \circ \eta_{TA} \circ \mathrm{id}_{TA}^*)^* = (\mathrm{id}_{TA} \circ \mathrm{id}_{TA}^*)^* = \mathrm{id}_{TA}^{**}$$

and

$$\mu_A \circ \mu_{TA} = \mathrm{id}_{TA}^* \circ \mathrm{id}_{TTA}^* = (\mathrm{id}_{TA}^* \circ \mathrm{id}_{TTA})^* = \mathrm{id}_{TA}^{**}$$

as well as

$$TA \xrightarrow{\eta_{TA}} TTA$$
$$\downarrow^{\mu_A}_{TA}$$

 $\mu_A \circ \eta_{TA} = \mathrm{id}_{TA}^* \circ \eta_{TA} = \mathrm{id}_{TA}$

since

and

$$\begin{array}{c} TTA \xleftarrow{T\eta_A} TA \\ \downarrow & \downarrow \\ TA \end{array} \xrightarrow{TA} TA$$

since $\$

$$\mu_A \circ T\eta_A = \mathrm{id}_{TA}^* \circ (\eta_{TA} \circ \eta_A)^* = (\mathrm{id}_{TA}^* \circ \eta_{TA} \circ \eta_A)^* = (\mathrm{id}_{TA} \circ \eta_A)^* = \eta_A^* = \mathrm{id}_{TA}$$

5. Conversely show that every monad induces a Kleisli triple.

Solution. Conversely, given a monad, we define for $f:A \to TB$

$$f^* = \mu_B \circ Tf$$

and we check the laws:

$$\eta_A^* = \mu_A \circ T\eta_A = \mathrm{id}_{TA}$$

and

$$f^* \circ \eta_A = \mu_B \circ Tf \circ \eta_A = \mu_B \circ \eta_{TB} \circ f = f$$

and the last equality is similar to the associativity of the Kleisli category above.

We admit that the two transformations are mutually inverse.

4 Monads in Rel

We define **Rel** as the 2-category whose 0-cells are sets, 1-cells $R : A \to B$ are relations $R \subseteq A \times B$, there is a unique 2-cell $\alpha : R \Rightarrow R' : A \to B$ whenever $R \subseteq R'$.

1. Recall both horizontal and vertical compositions in Rel.

Solution. Given relations $R: A \to B$ and $S: B \to C$, we define their horizontal composition as

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B.(a, b) \in R \land (b, c) \in S\}$$

The vertical composition is simply transitivity of \subseteq .

2. Generalize the definition of adjunction and monad to any 2-category.

Solution. An adjunction $f \dashv g$ is a pair of 1-cells $f : C \to D$ and $g : D \to C$ together with two cells $\eta : \mathrm{id}_C \Rightarrow g \circ f$ and $\varepsilon : f \circ g \Rightarrow \mathrm{id}_D$ satisfying the zig-zag identities.

Similarly, a monad is a 1-cell endomorphism $t: C \to C$ equipped with two cells $\eta: id_C \to t$ and $\mu: t \circ t \Rightarrow t$ satisfying the usual axioms.

3. Show that a left adjoint in **Rel** is a function.

Solution. A left adjoint $R: A \to B$ has a right adjoint $S: B \to A$, together with

- a unit η : id_A \subseteq S \circ R, and
- a counit $\varepsilon : R \circ S \subseteq \mathrm{id}_B$.

The axioms are not relevant here since there is at most one 2-cell between a given pair of parallel 1-cells. We now show that R is a function.

- An element $a \in A$ has an image: the first axioms says that there exists b such that $(a, b) \in R$, and $(b, a) \in S$. We write R(a) for the choice of such an element: it satisfies $(R(a), a) \in S$.
- An element $a \in A$ has at most one image: suppose that $(a, b) \in R$. Since $(R(a), a) \in S$ and $(a, b) \in R$, we have R(a) = b by the second axiom above.

Conversely, given a function $R: A \to B$, i.e.

$$R = \{(a, R(a)) \mid a \in A\}$$

we define $S:B\to A$ by

$$S = \{ (R(a), a) \mid a \in A \}$$

For every $a \in A$, we have $(a, a) \in S \circ R$. Conversely, given $(b, b') \in R \circ S$, there exists a such that b = R(a) and b' = R(a), thus b = b'.

4. What is a monad in **Rel**?

Solution. A monad in **Rel** is a relation $R: A \to A$ equipped with

- $-\eta: \mathrm{id}_A \Rightarrow R$, i.e. for every $a \in A$, $(a, a) \in R$, i.e. R is reflexive,
- $-\mu: R \circ R \Rightarrow R$, i.e. for every $(a, b) \in R$ and $(b, c) \in R$ we have $(a, c) \in R$, i.e. R is transitive,

i.e. a preorder. The commutation of the usual diagrams is automatic because there is at most one 2-cell between any pair of parallel 1-cells.

5 Monads in Span

The 2-category of **Span** is the category where

- a 0-cell is a set
- a 1-cell from A to B is a span: $A \xleftarrow{s} I \xrightarrow{t} B$

- a 2-cell $f: (s,t) \to (s',t')$ is a function making the following diagram commute

Horizontal composition of 1-cells is given by pullback.

1. What is an endomorphism $A \to A$? A 2-cell between such endomorphisms?

Solution. An endomorphism on A is a graph with A as set of vertices. A 2-cell is a graph morphism which preserves the vertices. More generally, a span as above can be seen as a graph with $A \cup B$ as vertices, whose edges have sources in A and targets in B.

2. Detail the compositions and identities of the 2-category.

Solution. The horizontal composition gives the graph whose edges are composable pairs of edges. The identity on a set A is the graph with A as vertices and one edge $a \to a$ for every $a \in A$. Vertical composition is simply usual composition of morphisms of graphs and identities are identity graph morphisms.

3. Is it really a 2-category?

Solution. No. The associativity and identity axioms for 2-categories hold only up to isomorphism. This is a bicategory.

4. What is a monad in this "2-category"?

Solution. A category.