
Monads

Samuel Mimram
samuel.mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

December 7, 2020

1 The exception monad

Given an adjunction F a G between categories C and D, the composite T = G ◦ F is always equipped
with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write Set∗ for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a ∈ A, and morphisms f : (A, a) → (B, b) are functions such that f(a) = b. Here, the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : Set∗ → Set.

Solution. The functor U sends a pointed set (A, a) to the underlying set A and a pointed function
to the function itself.

2. Construct a functor F : Set→ Set∗ which is such that the sets Set∗(FA, (B, b)) and Set(A,U(B, b))
are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

Solution. We define the functor F as FA = (A t {?}, ?) and, given f : A→ B,

Ff : FA→ FB

A 3 a 7→ f(a)

? 7→ ?

Let us construct the bijection:

– given a pointed function f : At{?} → B we obtain a function φ(f) : A→ B by precomposing
by the canonical inclusion ι : A→ A t {?}:

φ(f) = f ◦ ι

– given a function f : A→ B, we obtain a pointed function ψ(f) : A t {?} → (B, b) by

ψ(f) : A t {?} → B

A 3 a 7→ f(a)

? 7→ b

The two are easily shown to be mutually inverse. Namely, given a pointed function f : At{?} → B,
we have for a ∈ A

ψ(φ(f))(a) = ψ(f ◦ ι)(a) = f ◦ ι(a) = f(a) ψ(φ(f))(?) = b

and thus ψ(φ(f)) = f because f is pointed. Conversely, given a function f : A → B, we have for
a ∈ A,

φ(ψ(f))(a) = ψ(f) ◦ ι(a) = f(a)

3. We recall that a monad consists of an endofunctor T : C → C together with two natural transfor-
mations µ : T ◦ T ⇒ T and η : idC ⇒ T such that the following diagrams commute:

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT µ

µ

T T ◦ T T

T
idT

ηT

µ

Tη

idT

http://lambdacat.mimram.fr/


Describe a structure of monad on T = U ◦ F .

Solution. We have TA = A t {?}. We write TTA = A t {?, ?′} to distinguish between the two
added fresh elements. We define the natural transformations

ηA : A→ TA µA : TTA→ TA

by ηA is the canonical inclusion and

µA : A t {?, ?′} → A t {?}
A 3 a 7→ a

? 7→ ?

?′ 7→ ?

The family (ηA)A∈Set is natural: given a function f : A→ B, we have

A A t {?}

B B t {?}

f

ηA

ft{?}

ηB

since both morphisms send an element a ∈ A to f(a) ∈ B t {?}, and similarly for (µA)A∈Set.
Finally, we can check that the laws for monads are satisfied. Graphically, the associativity law is

A

?
?
?

A

?
?

A

?

= A

?
?
?

A

?
?

A

?

and unit laws are

A

?

A

?
?

A

?

= A

?

A

?

= A

?

A

?
?

A

?

4. Explain how a function A→ TB can be seen as “a function A→ B which might raise an exception”.

Solution. A function f : A→ Bt{?} can be seen as a function f : A→ B which raises an exception
when its image is ?.

5. Given f : A → B an OCaml function which might raise an unique exception e and g : B → C
a function which might raise an unique exception e′, construct a function corresponding to the
composite of f and g which might raise a unique exception e′′.

Solution. We define the function

let comp f g x =

try g (f x)

with

| E -> raise E’’

| E’ -> raise E’’

whose type is

(’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)



6. Given an arbitrary monad T on a category C, we write CT for the category whose objects are the
objects of C and morphisms f : A → B in CT are morphisms f : A → TB in C, called the Kleisli
category associated to T . Define composition and identities and show that the axioms of categories
are satisfied.

Solution. Given two morphism f : A → B and g : B → C in CT , i.e. morphisms f : A → TB and
g : B → TC in C, we define composition as

A TB TTC TC
f Tg µC

We define the identity A→ TA to be ηA. Given f : A→ B in CT , we can check that identity is a
neutral element on the left (f ◦ idA = f):

TA TTB TB

A TB

Tf µB

ηA

f

ηTB
idTB

and on the right (idB ◦ f = f):

TTB

A TB TB

µB

f

TηB

idTB

and that composition is associative (h ◦ (g ◦ f) = (h ◦ g) ◦ f): given f : A→ TB, g : B → TC and
h : C → TD, the composite h ◦ (g ◦ f) is

A TB TTC TC TTD TD
f Tg µC Th µD

On the other side, the composite is slightly more complicated: we first compute the composite h◦ g

B TC TTD TD
g Th µD

and thus the composite (h ◦ g) ◦ f is

A TB TTC TTTD TTD TD
f Tg TTh TµD µD

and we have

A TB TTC TTTD TTD

TC TTD TD

f Tg

µC

TTh

µTD

TµD

µD

Th µD

7. Give an explicit description of SetT in the case of the above exception monad.

Solution. Graphically the composition of f : A→ Bt{?} and g : B → C t{?} performs as follows:

A B

?

C

?

?′

C

?

f g idC

which is precisely the expected composition. The category SetT can equivalently be described as
the category of sets and partial functions.



2 More monads

1. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by a Kleisli
construction?

Solution. For non-determinism, we want to take P : Set → Set which to a set A associates the
power set (= the set of subsets).

2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

Solution. In a CCC C, we have for every object B the following adjunction:

C ⊥ C

−×B

B⇒−

i.e. for every objects A and C, we have a natural bijection

C(A×B,C) ' C(A,B ⇒ C)

Fixing an object S, the induced monad is S ⇒ (S×A) which is called the “state monad”. Namely,
TA can be seen as A which takes a state S as input and returns a modified state as output. A
morphism f : A→ B in the Kleisli category is a morphism in

C(A,S ⇒ (S ×B))

which, by the adjunction is the same as a morphism in

C(S ×A,S ×B)

and it can be checked that the composition is the expected one, which “passes on the state”.

3 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures,

which is captured by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the

following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

Solution. This is the exception monad.

2. What does the List monad defined below do?

http://www.haskell.org/haskellwiki/Monad


instance Monad [] where

m >>= f = concatMap f m

return x = [x]

Solution. This is the non-determinism monad.

A Kleisli triple (T, η, (−)∗) on a category C consists of

– a function T : Ob(C)→ Ob(C),

– a function ηA : A→ TA for every object A of C,

– a morphism f∗ : TA→ TB for every morphism f : A→ TB,

such that for every objects A, B, C and morphisms f : A→ TB and g : B → TC,

η∗A = idTA f∗ ◦ ηA = f g∗ ◦ f∗ = (g∗ ◦ f)∗

Our aim is to show that this data amounts to specify a monad on C.

3. Construct the Kleisli category associated to a Kleisli triple.

Solution. We construct the category CT whose objects are the same as those of C and morphisms
f : A → B in CT are morphisms f : A → TB in C. Identities are given by η. The composition of
f : A→ TB and g : B → TC is

g∗ ◦ f

We can check that composition is associative:

(h∗ ◦ g)∗ ◦ f = h∗ ◦ g∗ ◦ f

and admits identities as neutral elements:

η∗B ◦ f = idTB ◦ f = f f∗ ◦ ηA = f

4. Show that every Kleisli triple induces a monad.

Solution. Suppose given a triple (T, η, (−)∗), we extend T as a functor by defining, for every
morphism f : A→ B,

Tf = (ηB ◦ f)∗

This is indeed a functor since, given g : B → C, we have

Tg ◦ Tf = (ηC ◦ g)∗ ◦ (ηB ◦ f)∗ = ((ηC ◦ g)∗ ◦ ηB ◦ f)∗ = (ηC ◦ g ◦ f)∗ = T (g ◦ f)

and
T idA = (ηA ◦ idA)∗ = η∗A = idTA

We take η as unit of the monad and define the multiplication by

µA = id∗TA

The family (ηA)A∈C is natural, i.e.

A TA

B TB

f

ηA

Tf

ηB

since, for f : A→ B, we have

Tf ◦ ηA = (ηB ◦ f)∗ ◦ ηA = ηB ◦ f

and similarly for (µA)A∈C ,

TTA TA

TTB TB

TTf

µA

Tf

µB



we have

µB ◦TTf = id∗TB ◦ (ηTB ◦ (ηB ◦ f)∗)∗ = (id∗TB ◦ ηTB ◦ (ηB ◦ f)∗)∗ = (idTB ◦ (ηB ◦ f)∗)∗ = (ηB ◦ f)∗∗

and on the other side

Tf ◦ µA = (ηB ◦ f)∗ ◦ id∗TA = ((ηB ◦ f)∗ ◦ idTA)∗ = (ηB ◦ f)∗∗

Finally, we can check that the laws for monads are satisfied: we have

TTTA TTA

TTA TA

µTA

TµA

µA

µA

since

µA ◦ TµA = id∗TA ◦ (ηTA ◦ id∗TA)∗ = (id∗TA ◦ ηTA ◦ id∗TA)∗ = (idTA ◦ id∗TA)∗ = id∗∗TA

and
µA ◦ µTA = id∗TA ◦ id∗TTA = (id∗TA ◦ idTTA)∗ = id∗∗TA

as well as
TA TTA

TA
idTA

ηTA

µA

since
µA ◦ ηTA = id∗TA ◦ ηTA = idTA

and

TTA TA

TA

µA

TηA

idTA

since

µA ◦ TηA = id∗TA ◦ (ηTA ◦ ηA)∗ = (id∗TA ◦ ηTA ◦ ηA)∗ = (idTA ◦ ηA)∗ = η∗A = idTA

5. Conversely show that every monad induces a Kleisli triple.

Solution. Conversely, given a monad, we define for f : A→ TB

f∗ = µB ◦ Tf

and we check the laws:
η∗A = µA ◦ TηA = idTA

and
f∗ ◦ ηA = µB ◦ Tf ◦ ηA = µB ◦ ηTB ◦ f = f

and the last equality is similar to the associativity of the Kleisli category above.

We admit that the two transformations are mutually inverse.



4 Monads in Rel

We define Rel as the 2-category whose 0-cells are sets, 1-cells R : A→ B are relations R ⊆ A×B, there
is a unique 2-cell α : R⇒ R′ : A→ B whenever R ⊆ R′.

1. Recall both horizontal and vertical compositions in Rel.

Solution. Given relations R : A→ B and S : B → C, we define their horizontal composition as

S ◦R = {(a, c) ∈ A× C | ∃b ∈ B.(a, b) ∈ R ∧ (b, c) ∈ S}

The vertical composition is simply transitivity of ⊆.

2. Generalize the definition of adjunction and monad to any 2-category.

Solution. An adjunction f a g is a pair of 1-cells f : C → D and g : D → C together with two cells
η : idC ⇒ g ◦ f and ε : f ◦ g ⇒ idD satisfying the zig-zag identities.

Similarly, a monad is a 1-cell endomorphism t : C → C equipped with two cells η : idC → t and
µ : t ◦ t⇒ t satisfying the usual axioms.

3. Show that a left adjoint in Rel is a function.

Solution. A left adjoint R : A→ B has a right adjoint S : B → A, together with

– a unit η : idA ⊆ S ◦R, and

– a counit ε : R ◦ S ⊆ idB .

The axioms are not relevant here since there is at most one 2-cell between a given pair of parallel
1-cells. We now show that R is a function.

– An element a ∈ A has an image: the first axioms says that there exists b such that (a, b) ∈ R,
and (b, a) ∈ S. We write R(a) for the choice of such an element: it satisfies (R(a), a) ∈ S.

– An element a ∈ A has at most one image: suppose that (a, b) ∈ R. Since (R(a), a) ∈ S and
(a, b) ∈ R, we have R(a) = b by the second axiom above.

Conversely, given a function R : A→ B, i.e.

R = {(a,R(a)) | a ∈ A}

we define S : B → A by
S = {(R(a), a) | a ∈ A}

For every a ∈ A, we have (a, a) ∈ S ◦ R. Conversely, given (b, b′) ∈ R ◦ S, there exists a such that
b = R(a) and b′ = R(a), thus b = b′.

4. What is a monad in Rel?

Solution. A monad in Rel is a relation R : A→ A equipped with

– η : idA ⇒ R, i.e. for every a ∈ A, (a, a) ∈ R, i.e. R is reflexive,

– µ : R ◦R⇒ R, i.e. for every (a, b) ∈ R and (b, c) ∈ R we have (a, c) ∈ R, i.e. R is transitive,

i.e. a preorder. The commutation of the usual diagrams is automatic because there is at most one
2-cell between any pair of parallel 1-cells.

5 Monads in Span

The 2-category of Span is the category where

– a 0-cell is a set

– a 1-cell from A to B is a span: A I Bs t



– a 2-cell f : (s, t)→ (s′, t′) is a function making the following diagram commute

I

A B

I ′

s

f

t

s′ t′

Horizontal composition of 1-cells is given by pullback.

1. What is an endomorphism A→ A? A 2-cell between such endomorphisms?

Solution. An endomorphism on A is a graph with A as set of vertices. A 2-cell is a graph morphism
which preserves the vertices. More generally, a span as above can be seen as a graph with A∪B as
vertices, whose edges have sources in A and targets in B.

2. Detail the compositions and identities of the 2-category.

Solution. The horizontal composition gives the graph whose edges are composable pairs of edges.
The identity on a set A is the graph with A as vertices and one edge a→ a for every a ∈ A. Vertical
composition is simply usual composition of morphisms of graphs and identities are identity graph
morphisms.

3. Is it really a 2-category?

Solution. No. The associativity and identity axioms for 2-categories hold only up to isomorphism.
This is a bicategory.

4. What is a monad in this “2-category”?

Solution. A category.


	The exception monad
	More monads
	Monads in Haskell
	Monads in Rel
	Monads in Span

