Monads

Samuel Mimram
samuel .mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

December 7, 2020

1 The exception monad

Given an adjunction F' - G between categories C and D, the composite 7' = G o F' is always equipped
with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write Set, for the category whose objects are pointed sets, i.e. pairs (4, a) where A is a set and
a € A, and morphisms f : (A,a) — (B,b) are functions such that f(a) = b. Here, the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : Set, — Set.

Solution. The functor U sends a pointed set (4, a) to the underlying set A and a pointed function
to the function itself.

2. Construct a functor F' : Set — Set, which is such that the sets Set..(F'A, (B,b)) and Set(A, U(B, b))
are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

Solution. We define the functor F as FA = (AU {x},x) and, given f: A — B,

Ff:FA— FB
Asa— f(a)
* > %

Let us construct the bijection:

— given a pointed function f : AU{x} — B we obtain a function ¢(f) : A — B by precomposing
by the canonical inclusion ¢ : A — A U {x}:

¢(f) = fou
— given a function f: A — B, we obtain a pointed function ¢(f) : AU {*x} — (B,b) by
(f): AU{x} - B

A>a— f(a)
*+—=b

The two are easily shown to be mutually inverse. Namely, given a pointed function f : AU{x} — B,
we have for a € A

P(¢(f))(a) = p(f or)(a) = foula) = fla) P((f)(x) = b

and thus ¥ (¢(f)) = f because f is pointed. Conversely, given a function f : A — B, we have for
a€ A,

(@) = »(f) o vla) = f(a)

3. We recall that a monad consists of an endofunctor T': C — C together with two natural transfor-
mations p: T oT = T and 7 : id¢ = T such that the following diagrams commute:

ToToT —t ToT T ToT L

jﬂOZW:::ﬁzzi T

http://lambdacat.mimram.fr/

Describe a structure of monad on T'=U o F.

Solution. We have TA = AU {x}. We write TTA = AU {x,+'} to distinguish between the two
added fresh elements. We define the natural transformations

na:A—TA pa:TTA—TA
by 14 is the canonical inclusion and

pa: AU — AU {*}
A>a—a
e —
* ok

The family (n4)acset is natural: given a function f: A — B, we have

A Au{x)

fl lfu{*}

since both morphisms send an element a € A to f(a) € B U {x}, and similarly for (1)aeset-
Finally, we can check that the laws for monads are satisfied. Graphically, the associativity law is

hommm - m - = Homm - - *

DO0-00-006

4. Explain how a function A — T B can be seen as “a function A — B which might raise an exception”.

Solution. A function f : A — BU{x} can be seen as a function f : A — B which raises an exception
when its image is *.

5. Given f : A — B an OCaml function which might raise an unique exception e and g : B — C
a function which might raise an unique exception €/, construct a function corresponding to the
composite of f and g which might raise a unique exception e”.

Solution. We define the function

let comp f g x =
try g (f x)
with
| E -> raise E”?
| E> => raise E”?

whose type is

(’a -> ’b) > (b -> ’¢c) -> (Pa -> ’c)

6. Given an arbitrary monad T on a category C, we write Cp for the category whose objects are the
objects of C and morphisms f : A — B in Cr are morphisms f : A — TB in C, called the Kleisli
category associated to T. Define composition and identities and show that the axioms of categories
are satisfied.

Solution. Given two morphism f: A — B and g: B — C in Crp, i.e. morphisms f : A — TB and
g: B — TC in C, we define composition as

AT T e M, O

We define the identity A — T'A to be 4. Given f: A — B in Cp, we can check that identity is a
neutral element on the left (f oids = f):

TA 2 7B 2, TR

T’IAT nTBT
idrp

AﬁTB

and on the right (idg o f = f):

TTB
TV XBJ
TB TB

idrp

A f

and that composition is associative (ho(go f) = (hog)o f): given f: A—-TB, g: B— TC and
h:C — TD, the composite ho (go f) is

A—Ly 29 rre 42 7o Ly TTD E2, TD
On the other side, the composite is slightly more complicated: we first compute the composite hog

B2y 71Cc - Ihy TTD 225 TD

and thus the composite (hog)o f is

AL 19 rre LTy prrp ER TTD M2 TD
and we have
A1 T pre IThy prrp TR0y TTD

e o e

7C ———— TTD ——— TD
Th 1235]

7. Give an explicit description of Setr in the case of the above exception monad.

Solution. Graphically the composition of f: A — BU{x} and g : B — C'U{*} performs as follows:

which is precisely the expected composition. The category Setr can equivalently be described as
the category of sets and partial functions.

2 More monads

1. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by a Kleisli
construction?

Solution. For non-determinism, we want to take P : Set — Set which to a set A associates the
power set (= the set of subsets).

2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

Solution. In a CCC C, we have for every object B the following adjunction:

i.e. for every objects A and C, we have a natural bijection
C(Ax B,C)~C(A,B=C)

Fixing an object S, the induced monad is S = (S x A) which is called the “state monad”. Namely,
TA can be seen as A which takes a state S as input and returns a modified state as output. A
morphism f: A — B in the Kleisli category is a morphism in

C(A,S = (S x B))
which, by the adjunction is the same as a morphism in
C(Sx A,S x B)

and it can be checked that the composition is the expected one, which “passes on the state”.

3 Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures,
which is captured by the Monad class. All common monads are members of it:

class Monad m where
(>>=) ::ma->((a->mb) -=>mbd
return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the
following equations:

return a >>=k = k a
m >>= return = nm
m>>= (\x >k x>>=h) = (m>=%k) >=h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
(Just x) >>=f = f x

Solution. This is the exception monad.

2. What does the List monad defined below do?

http://www.haskell.org/haskellwiki/Monad

instance Monad [] where
m >>= f = concatMap f m
return x = [x]

Solution. This is the non-determinism monad.

A Kleisli triple (T, n,(—)*) on a category C consists of

— a function T : Ob(C) — Ob(C),

— a function 14 : A — T A for every object A of C,

— a morphism f*:TA — TB for every morphism f: A — TB,
such that for every objects A, B, C and morphisms f: A —->TBand g: B — TC,

na =idra frona=f grofr=(g"of)

Our aim is to show that this data amounts to specify a monad on C.

3. Construct the Kleisli category associated to a Kleisli triple.

Solution. We construct the category Cr whose objects are the same as those of C and morphisms
f:A— Bin Crp are morphisms f : A — TB in C. Identities are given by 7. The composition of
fitA—=TBandg: B—TC is

grof
We can check that composition is associative:
(h"og)*of=h"og*of
and admits identities as neutral elements:
npof=idrpof=f frona=f
4. Show that every Kleisli triple induces a monad.

Solution. Suppose given a triple (T,n,(—)*), we extend T as a functor by defining, for every
morphism f: A — B,

Tf=msof)
This is indeed a functor since, given g : B — C, we have

TgoTf=(mcog) ompef) =(nceg)onsof) =mcogoef) =T(gof)
and
Tidg = (nacida)* =nj4 =idra
We take 1 as unit of the monad and define the multiplication by
pra =idpy
The family (n4)acc is natural, i.e.
A, TA

1

B——TB
nB
since, for f: A — B, we have
Tfona=mpof) ona=npof

and similarly for (u4)aec,
TTA 225 TA

r71| |71

Tl’'B —— TB
mB

we have
ppoTTf=idpge(nree(nso f)*)" = (idpgonrse(npo f)*)" = (idrpo (npo f)*)" = (npo f)™
and on the other side

Tfopa=(npof) oidry = ((npof) oidra)” =(npo f)*

Finally, we can check that the laws for monads are satisfied: we have

TTTA 4 7T A

ILTAJ/ J//"A

TTA —— TA
HA

since
paoTpa=idps o (nraoidyy)” = (idpg onra oidyy)” = (idra oidyy)™ = idry
and
pa © pra =idpy oidppy = (idpy 0 idrra)” =id7y

as well as

TA 25 TTA

LMA
idﬁ
TA
since
paonra =idp onra =idra

and

TTA &L 1A

P‘Al /

idra
TA

since

praoTna=idp 0 (mraona)” = (idpsonraona)” = (idraona)® =nj =idra
5. Conversely show that every monad induces a Kleisli triple.

Solution. Conversely, given a monad, we define for f: A - TB

fP=npoTf
and we check the laws:
na = paoTna=idra
and
ffona=pupoTlfona=puponrpof=7f

and the last equality is similar to the associativity of the Kleisli category above.

We admit that the two transformations are mutually inverse.

4 Monads in Rel

We define Rel as the 2-category whose 0-cells are sets, 1-cells R : A — B are relations R C A X B, there
is a unique 2-cell o : R = R’ : A — B whenever R C R'.

1. Recall both horizontal and vertical compositions in Rel.
Solution. Given relations R: A — B and S : B — C, we define their horizontal composition as
SoR={(a,c) e Ax C|3be B.(a,b) € RA (b,c) € S}
The vertical composition is simply transitivity of C.

2. Generalize the definition of adjunction and monad to any 2-category.

Solution. An adjunction f - g is a pair of 1-cells f : C' — D and g : D — C together with two cells
n:idec = go fand e: f o g = idp satisfying the zig-zag identities.

Similarly, a monad is a 1-cell endomorphism ¢ : C' — C' equipped with two cells n : ide — ¢ and
W tot =t satisfying the usual axioms.

3. Show that a left adjoint in Rel is a function.

Solution. A left adjoint R : A — B has a right adjoint S : B — A, together with

— aunit n:idg € So R, and

— acounit € : Ro S Cidp.

The axioms are not relevant here since there is at most one 2-cell between a given pair of parallel
1-cells. We now show that R is a function.

— An element a € A has an image: the first axioms says that there exists b such that (a,b) € R,
and (b,a) € S. We write R(a) for the choice of such an element: it satisfies (R(a),a) € S.

— An element a € A has at most one image: suppose that (a,b) € R. Since (R(a),a) € S and
(a,b) € R, we have R(a) = b by the second axiom above.

Conversely, given a function R: A — B, i.e.
R={(a,R(a)) |a € A}

we define S: B — A by
S ={(R(a),a) | a € A}

For every a € A, we have (a,a) € S o R. Conversely, given (b,b') € Ro S, there exists a such that
b= R(a) and ¥’ = R(a), thus b=1'.

4. What is a monad in Rel?
Solution. A monad in Rel is a relation R : A — A equipped with

— 1n:idg = R, i.e. for every a € A, (a,a) € R, i.e. R is reflexive,
— p:RoR= R, ie. for every (a,b) € R and (b,¢) € R we have (a,c) € R, i.e. R is transitive,

i.e. a preorder. The commutation of the usual diagrams is automatic because there is at most one
2-cell between any pair of parallel 1-cells.

5 Monads in Span
The 2-category of Span is the category where
— a 0-cell is a set

— a 1-cell from A to Bis a span: A +*— I ——~ B

— a 2-cell f:(s,t) = (¢,¢) is a function making the following diagram commute

Horizontal composition of 1-cells is given by pullback.
1. What is an endomorphism A — A? A 2-cell between such endomorphisms?

Solution. An endomorphism on A is a graph with A as set of vertices. A 2-cell is a graph morphism
which preserves the vertices. More generally, a span as above can be seen as a graph with AU B as
vertices, whose edges have sources in A and targets in B.

2. Detail the compositions and identities of the 2-category.

Solution. The horizontal composition gives the graph whose edges are composable pairs of edges.
The identity on a set A is the graph with A as vertices and one edge a — a for every a € A. Vertical
composition is simply usual composition of morphisms of graphs and identities are identity graph
morphisms.

3. Is it really a 2-category?

Solution. No. The associativity and identity axioms for 2-categories hold only up to isomorphism.
This is a bicategory.

4. What is a monad in this “2-category”?

Solution. A category.

	The exception monad
	More monads
	Monads in Haskell
	Monads in Rel
	Monads in Span

