Monads

Samuel Mimram
samuel.mimram@lix.polytechnique.fr
http://lambdacat.mimram.fr

January 9, 2023

I The exception monad

Given an adjunction $F \dashv G$ between categories \mathcal{C} and \mathcal{D}, the composite $T=G \circ F$ is always equipped with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write Set $_{*}$ for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and $a \in A$, and morphisms $f:(A, a) \rightarrow(B, b)$ are functions such that $f(a)=b$. Here, the distinguished element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor $U: \mathbf{S e t}_{*} \rightarrow$ Set.

Solution. The functor U sends a pointed set (A, a) to the underlying set A and a pointed function to the function itself.
2. Construct a functor $F:$ Set $\rightarrow \mathbf{S e t}_{*}$ which is such that the sets $\boldsymbol{S e t}_{*}(F A,(B, b))$ and $\boldsymbol{\operatorname { S e t }}(A, U(B, b))$ are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

Solution. We define the functor F as $F A=(A \sqcup\{\star\}, \star)$ and, given $f: A \rightarrow B$,

$$
\begin{aligned}
F f: F A & \rightarrow F B \\
A \ni a & \mapsto f(a) \\
\star & \mapsto \star
\end{aligned}
$$

Let us construct the bijection:

- given a pointed function $f: A \sqcup\{\star\} \rightarrow B$ we obtain a function $\phi(f): A \rightarrow B$ by precomposing by the canonical inclusion $\iota: A \rightarrow A \sqcup\{\star\}$:

$$
\phi(f)=f \circ \iota
$$

- given a function $f: A \rightarrow B$, we obtain a pointed function $\psi(f): A \sqcup\{\star\} \rightarrow(B, b)$ by

$$
\begin{aligned}
\psi(f): A \sqcup\{\star\} & \rightarrow B \\
A \ni & a \mapsto f(a) \\
& \star \mapsto b
\end{aligned}
$$

The two are easily shown to be mutually inverse. Namely, given a pointed function $f: A \sqcup\{\star\} \rightarrow B$, we have for $a \in A$

$$
\psi(\phi(f))(a)=\psi(f \circ \iota)(a)=f \circ \iota(a)=f(a) \quad \psi(\phi(f))(\star)=b
$$

and thus $\psi(\phi(f))=f$ because f is pointed. Conversely, given a function $f: A \rightarrow B$, we have for $a \in A$,

$$
\phi(\psi(f))(a)=\psi(f) \circ \iota(a)=f(a)
$$

3. We recall that a monad consists of an endofunctor $T: \mathcal{C} \rightarrow \mathcal{C}$ together with two natural transformations $\mu: T \circ T \Rightarrow T$ and $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow T$ such that the following diagrams commute:

Describe a structure of monad on $T=U \circ F$ ．
Solution．We have $T A=A \sqcup\{\star\}$ ．We write $T T A=A \sqcup\left\{\star, \star^{\prime}\right\}$ to distinguish between the two added fresh elements．We define the natural transformations

$$
\eta_{A}: A \rightarrow T A \quad \quad \mu_{A}: T T A \rightarrow T A
$$

by η_{A} is the canonical inclusion and

$$
\begin{aligned}
\mu_{A}: A \sqcup\left\{\star, \star^{\prime}\right\} & \rightarrow A \sqcup\{\star\} \\
A \ni a & \mapsto a \\
\star & \mapsto \star \\
\star^{\prime} & \mapsto \star
\end{aligned}
$$

The family $\left(\eta_{A}\right)_{A \in \operatorname{Set}}$ is natural：given a function $f: A \rightarrow B$ ，we have

since both morphisms send an element $a \in A$ to $f(a) \in B \sqcup\{\star\}$ ，and similarly for $\left(\mu_{A}\right)_{A \in \text { Set }}$ ． Finally，we can check that the laws for monads are satisfied．Graphically，the associativity law is

and unit laws are

4．Explain how a function $A \rightarrow T B$ can be seen as＂a function $A \rightarrow B$ which might raise an exception＂．
Solution．A function $f: A \rightarrow B \sqcup\{\star\}$ can be seen as a function $f: A \rightarrow B$ which raises an exception when its image is \star ．

5．Given $f: A \rightarrow B$ an OCaml function which might raise an unique exception e and $g: B \rightarrow C$ a function which might raise an unique exception e^{\prime} ，construct a function corresponding to the composite of f and g which might raise a unique exception $e^{\prime \prime}$ ．

Solution．We define the function

```
let comp f g x =
    try g (f x)
    with
    | E -> raise E',
    | E' -> raise E''
```

whose type is
（＇a－＞＇b）－＞（＇b－＞＇c）－＞（＇a－＞＇c）
6. Given an arbitrary monad T on a category \mathcal{C}, we write \mathcal{C}_{T} for the category whose objects are the objects of \mathcal{C} and morphisms $f: A \rightarrow B$ in \mathcal{C}_{T} are morphisms $f: A \rightarrow T B$ in \mathcal{C}, called the Kleisli category associated to T. Define composition and identities and show that the axioms of categories are satisfied.

Solution. Given two morphism $f: A \rightarrow B$ and $g: B \rightarrow C$ in \mathcal{C}_{T}, i.e. morphisms $f: A \rightarrow T B$ and $g: B \rightarrow T C$ in \mathcal{C}, we define composition as

$$
A \xrightarrow{f} T B \xrightarrow{T g} T T C \xrightarrow{\mu_{C}} T C
$$

We define the identity $A \rightarrow T A$ to be η_{A}. Given $f: A \rightarrow B$ in \mathcal{C}_{T}, we can check that identity is a neutral element on the left $\left(f \circ \operatorname{id}_{A}=f\right)$:

and on the right $\left(\operatorname{id}_{B} \circ f=f\right)$:

and that composition is associative $(h \circ(g \circ f)=(h \circ g) \circ f)$: given $f: A \rightarrow T B, g: B \rightarrow T C$ and $h: C \rightarrow T D$, the composite $h \circ(g \circ f)$ is

$$
A \xrightarrow{f} T B \xrightarrow{T g} T T C \xrightarrow{\mu_{C}} T C \xrightarrow{T h} T T D \xrightarrow{\mu_{D}} T D
$$

On the other side, the composite is slightly more complicated: we first compute the composite $h \circ g$

$$
B \xrightarrow{g} T C \xrightarrow{T h} T T D \xrightarrow{\mu_{D}} T D
$$

and thus the composite $(h \circ g) \circ f$ is

$$
A \xrightarrow{f} T B \xrightarrow{T g} T T C \xrightarrow{T T h} T T T D \xrightarrow{T \mu_{D}} T T D \xrightarrow{\mu_{D}} T D
$$

and we have

7. Give an explicit description of $\mathbf{S e t}_{T}$ in the case of the above exception monad.

Solution. Graphically the composition of $f: A \rightarrow B \sqcup\{\star\}$ and $g: B \rightarrow C \sqcup\{\star\}$ performs as follows:

which is precisely the expected composition. The category Set_{T} can equivalently be described as the category of sets and partial functions.

II More monads

1. A non-deterministic function is a function that might return a set of values instead of a single value. How could we could we similarly define a category of non-deterministic functions by a Kleisli construction?

Solution. For non-determinism, we want to take \mathcal{P} : Set \rightarrow Set which to a set A associates the power set ($=$ the set of subsets).
2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

Solution. In a CCC \mathcal{C}, we have for every object B the following adjunction:

i.e. for every objects A and C, we have a natural bijection

$$
\mathcal{C}(A \times B, C) \simeq \mathcal{C}(A, B \Rightarrow C)
$$

Fixing an object S, the induced monad is $S \Rightarrow(S \times A)$ which is called the "state monad". Namely, $T A$ can be seen as A which takes a state S as input and returns a modified state as output. A morphism $f: A \rightarrow B$ in the Kleisli category is a morphism in

$$
\mathcal{C}(A, S \Rightarrow(S \times B))
$$

which, by the adjunction is the same as a morphism in

$$
\mathcal{C}(S \times A, S \times B)
$$

and it can be checked that the composition is the expected one, which "passes on the state".

III Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

```
Monads can be viewed as a standard programming interface to various data or control structures,
which is captured by the Monad class. All common monads are members of it:
class Monad m where
    (>>=) :: m a -> (a -> m b) -> m b
    return :: a -> m a
In addition to implementing the class functions, all instances of Monad should obey the
following equations:
return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h
```

1. What does the Maybe monad defined below do?
```
data Maybe a = Nothing | Just a
instance Monad Maybe where
    return = Just
    Nothing >>= f = Nothing
        (Just x) >>= f = f x
```

Solution. This is the exception monad.
2. What does the List monad defined below do?

```
instance Monad [] where
    m >>= f = concatMap f m
    return x = [x]
```

Solution. This is the non-determinism monad.
A Kleisli triple $\left(T, \eta,(-)^{*}\right)$ on a category \mathcal{C} consists of

- a function $T: ~ \mathrm{Ob}(\mathcal{C}) \rightarrow \mathrm{Ob}(\mathcal{C})$,
- a function $\eta_{A}: A \rightarrow T A$ for every object A of \mathcal{C},
- a morphism $f^{*}: T A \rightarrow T B$ for every morphism $f: A \rightarrow T B$,
such that for every objects A, B, C and morphisms $f: A \rightarrow T B$ and $g: B \rightarrow T C$,

$$
\eta_{A}^{*}=\operatorname{id}_{T A} \quad f^{*} \circ \eta_{A}=f \quad g^{*} \circ f^{*}=\left(g^{*} \circ f\right)^{*}
$$

Our aim is to show that this data amounts to specify a monad on \mathcal{C}.
3. Construct the Kleisli category associated to a Kleisli triple.

Solution. We construct the category \mathcal{C}_{T} whose objects are the same as those of \mathcal{C} and morphisms $f: A \rightarrow B$ in \mathcal{C}_{T} are morphisms $f: A \rightarrow T B$ in \mathcal{C}. Identities are given by η. The composition of $f: A \rightarrow T B$ and $g: B \rightarrow T C$ is

$$
g^{*} \circ f
$$

We can check that composition is associative:

$$
\left(h^{*} \circ g\right)^{*} \circ f=h^{*} \circ g^{*} \circ f
$$

and admits identities as neutral elements:

$$
\eta_{B}^{*} \circ f=\operatorname{id}_{T B} \circ f=f \quad f^{*} \circ \eta_{A}=f
$$

4. Show that every Kleisli triple induces a monad.

Solution. Suppose given a triple $\left(T, \eta,(-)^{*}\right)$, we extend T as a functor by defining, for every morphism $f: A \rightarrow B$,

$$
T f=\left(\eta_{B} \circ f\right)^{*}
$$

This is indeed a functor since, given $g: B \rightarrow C$, we have

$$
T g \circ T f=\left(\eta_{C} \circ g\right)^{*} \circ\left(\eta_{B} \circ f\right)^{*}=\left(\left(\eta_{C} \circ g\right)^{*} \circ \eta_{B} \circ f\right)^{*}=\left(\eta_{C} \circ g \circ f\right)^{*}=T(g \circ f)
$$

and

$$
T \mathrm{id}_{A}=\left(\eta_{A} \circ \mathrm{id}_{A}\right)^{*}=\eta_{A}^{*}=\mathrm{id}_{T A}
$$

We take η as unit of the monad and define the multiplication by

$$
\mu_{A}=\mathrm{id}_{T A}^{*}
$$

The family $\left(\eta_{A}\right)_{A \in \mathcal{C}}$ is natural, i.e.

since, for $f: A \rightarrow B$, we have

$$
T f \circ \eta_{A}=\left(\eta_{B} \circ f\right)^{*} \circ \eta_{A}=\eta_{B} \circ f
$$

and similarly for $\left(\mu_{A}\right)_{A \in \mathcal{C}}$,

we have
$\mu_{B} \circ T T f=\operatorname{id}_{T B}^{*} \circ\left(\eta_{T B} \circ\left(\eta_{B} \circ f\right)^{*}\right)^{*}=\left(\operatorname{id}_{T B}^{*} \circ \eta_{T B} \circ\left(\eta_{B} \circ f\right)^{*}\right)^{*}=\left(\operatorname{id}_{T B} \circ\left(\eta_{B} \circ f\right)^{*}\right)^{*}=\left(\eta_{B} \circ f\right)^{* *}$
and on the other side

$$
T f \circ \mu_{A}=\left(\eta_{B} \circ f\right)^{*} \circ \operatorname{id}_{T A}^{*}=\left(\left(\eta_{B} \circ f\right)^{*} \circ \operatorname{id}_{T A}\right)^{*}=\left(\eta_{B} \circ f\right)^{* *}
$$

Finally, we can check that the laws for monads are satisfied: we have

since

$$
\mu_{A} \circ T \mu_{A}=\operatorname{id}_{T A}^{*} \circ\left(\eta_{T A} \circ \operatorname{id}_{T A}^{*}\right)^{*}=\left(\mathrm{id}_{T A}^{*} \circ \eta_{T A} \circ \mathrm{id}_{T A}^{*}\right)^{*}=\left(\mathrm{id}_{T A} \circ \mathrm{id}_{T A}^{*}\right)^{*}=\mathrm{id}_{T A}^{* *}
$$

and

$$
\mu_{A} \circ \mu_{T A}=\mathrm{id}_{T A}^{*} \circ \mathrm{id}_{T T A}^{*}=\left(\mathrm{id}_{T A}^{*} \circ \mathrm{id}_{T T A}\right)^{*}=\mathrm{id}_{T A}^{* *}
$$

as well as

since

$$
\mu_{A} \circ \eta_{T A}=\mathrm{id}_{T A}^{*} \circ \eta_{T A}=\mathrm{id}_{T A}
$$

and

since

$$
\mu_{A} \circ T \eta_{A}=\operatorname{id}_{T A}^{*} \circ\left(\eta_{T A} \circ \eta_{A}\right)^{*}=\left(\mathrm{id}_{T A}^{*} \circ \eta_{T A} \circ \eta_{A}\right)^{*}=\left(\operatorname{id}_{T A} \circ \eta_{A}\right)^{*}=\eta_{A}^{*}=\mathrm{id}_{T A}
$$

5. Conversely show that every monad induces a Kleisli triple.

Solution. Conversely, given a monad, we define for $f: A \rightarrow T B$

$$
f^{*}=\mu_{B} \circ T f
$$

and we check the laws:

$$
\eta_{A}^{*}=\mu_{A} \circ T \eta_{A}=\operatorname{id}_{T A}
$$

and

$$
f^{*} \circ \eta_{A}=\mu_{B} \circ T f \circ \eta_{A}=\mu_{B} \circ \eta_{T B} \circ f=f
$$

and the last equality is similar to the associativity of the Kleisli category above.
We admit that the two transformations are mutually inverse.

