
Monads

Samuel Mimram
samuel.mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

January 9, 2023

I The exception monad

Given an adjunction F ⊣ G between categories C and D, the composite T = G ◦ F is always equipped
with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write Set∗ for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a ∈ A, and morphisms f : (A, a) → (B, b) are functions such that f(a) = b. Here, the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : Set∗ → Set.

Solution. The functor U sends a pointed set (A, a) to the underlying set A and a pointed function
to the function itself.

2. Construct a functor F : Set → Set∗ which is such that the sets Set∗(FA, (B, b)) and Set(A,U(B, b))
are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

Solution. We define the functor F as FA = (A ⊔ {⋆}, ⋆) and, given f : A→ B,

Ff : FA→ FB

A ∋ a 7→ f(a)

⋆ 7→ ⋆

Let us construct the bijection:

– given a pointed function f : A⊔{⋆} → B we obtain a function ϕ(f) : A→ B by precomposing
by the canonical inclusion ι : A→ A ⊔ {⋆}:

ϕ(f) = f ◦ ι

– given a function f : A→ B, we obtain a pointed function ψ(f) : A ⊔ {⋆} → (B, b) by

ψ(f) : A ⊔ {⋆} → B

A ∋ a 7→ f(a)

⋆ 7→ b

The two are easily shown to be mutually inverse. Namely, given a pointed function f : A⊔{⋆} → B,
we have for a ∈ A

ψ(ϕ(f))(a) = ψ(f ◦ ι)(a) = f ◦ ι(a) = f(a) ψ(ϕ(f))(⋆) = b

and thus ψ(ϕ(f)) = f because f is pointed. Conversely, given a function f : A → B, we have for
a ∈ A,

ϕ(ψ(f))(a) = ψ(f) ◦ ι(a) = f(a)

3. We recall that a monad consists of an endofunctor T : C → C together with two natural transfor-
mations µ : T ◦ T ⇒ T and η : idC ⇒ T such that the following diagrams commute:

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT µ

µ

T T ◦ T T

T
idT

ηT

µ

Tη

idT

http://lambdacat.mimram.fr/


Describe a structure of monad on T = U ◦ F .

Solution. We have TA = A ⊔ {⋆}. We write TTA = A ⊔ {⋆, ⋆′} to distinguish between the two
added fresh elements. We define the natural transformations

ηA : A→ TA µA : TTA→ TA

by ηA is the canonical inclusion and

µA : A ⊔ {⋆, ⋆′} → A ⊔ {⋆}
A ∋ a 7→ a

⋆ 7→ ⋆

⋆′ 7→ ⋆

The family (ηA)A∈Set is natural: given a function f : A→ B, we have

A A ⊔ {⋆}

B B ⊔ {⋆}

f

ηA

f⊔{⋆}

ηB

since both morphisms send an element a ∈ A to f(a) ∈ B ⊔ {⋆}, and similarly for (µA)A∈Set.
Finally, we can check that the laws for monads are satisfied. Graphically, the associativity law is

A

⋆
⋆
⋆

A

⋆
⋆

A

⋆

= A

⋆
⋆
⋆

A

⋆
⋆

A

⋆

and unit laws are

A

⋆

A

⋆
⋆

A

⋆

= A

⋆

A

⋆

= A

⋆

A

⋆
⋆

A

⋆

4. Explain how a function A→ TB can be seen as “a function A→ B which might raise an exception”.

Solution. A function f : A→ B⊔{⋆} can be seen as a function f : A→ B which raises an exception
when its image is ⋆.

5. Given f : A → B an OCaml function which might raise an unique exception e and g : B → C
a function which might raise an unique exception e′, construct a function corresponding to the
composite of f and g which might raise a unique exception e′′.

Solution. We define the function

let comp f g x =

try g (f x)

with

| E -> raise E’’

| E’ -> raise E’’

whose type is

(’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)



6. Given an arbitrary monad T on a category C, we write CT for the category whose objects are the
objects of C and morphisms f : A → B in CT are morphisms f : A → TB in C, called the Kleisli
category associated to T . Define composition and identities and show that the axioms of categories
are satisfied.

Solution. Given two morphism f : A → B and g : B → C in CT , i.e. morphisms f : A → TB and
g : B → TC in C, we define composition as

A TB TTC TC
f Tg µC

We define the identity A → TA to be ηA. Given f : A → B in CT , we can check that identity is a
neutral element on the left (f ◦ idA = f):

TA TTB TB

A TB

Tf µB

ηA

f

ηTB
idTB

and on the right (idB ◦ f = f):

TTB

A TB TB

µB

f

TηB

idTB

and that composition is associative (h ◦ (g ◦ f) = (h ◦ g) ◦ f): given f : A→ TB, g : B → TC and
h : C → TD, the composite h ◦ (g ◦ f) is

A TB TTC TC TTD TD
f Tg µC Th µD

On the other side, the composite is slightly more complicated: we first compute the composite h◦ g

B TC TTD TD
g Th µD

and thus the composite (h ◦ g) ◦ f is

A TB TTC TTTD TTD TD
f Tg TTh TµD µD

and we have

A TB TTC TTTD TTD

TC TTD TD

f Tg

µC

TTh

µTD

TµD

µD

Th µD

7. Give an explicit description of SetT in the case of the above exception monad.

Solution. Graphically the composition of f : A→ B⊔{⋆} and g : B → C ⊔{⋆} performs as follows:

A B

⋆

C

⋆

⋆′

C

⋆

f g idC

which is precisely the expected composition. The category SetT can equivalently be described as
the category of sets and partial functions.



II More monads

1. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by a Kleisli
construction?

Solution. For non-determinism, we want to take P : Set → Set which to a set A associates the
power set (= the set of subsets).

2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

Solution. In a CCC C, we have for every object B the following adjunction:

C ⊥ C

−×B

B⇒−

i.e. for every objects A and C, we have a natural bijection

C(A×B,C) ≃ C(A,B ⇒ C)

Fixing an object S, the induced monad is S ⇒ (S×A) which is called the “state monad”. Namely,
TA can be seen as A which takes a state S as input and returns a modified state as output. A
morphism f : A→ B in the Kleisli category is a morphism in

C(A,S ⇒ (S ×B))

which, by the adjunction is the same as a morphism in

C(S ×A,S ×B)

and it can be checked that the composition is the expected one, which “passes on the state”.

III Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures,

which is captured by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the

following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

Solution. This is the exception monad.

2. What does the List monad defined below do?

http://www.haskell.org/haskellwiki/Monad


instance Monad [] where

m >>= f = concatMap f m

return x = [x]

Solution. This is the non-determinism monad.

A Kleisli triple (T, η, (−)∗) on a category C consists of

– a function T : Ob(C) → Ob(C),

– a function ηA : A→ TA for every object A of C,

– a morphism f∗ : TA→ TB for every morphism f : A→ TB,

such that for every objects A, B, C and morphisms f : A→ TB and g : B → TC,

η∗A = idTA f∗ ◦ ηA = f g∗ ◦ f∗ = (g∗ ◦ f)∗

Our aim is to show that this data amounts to specify a monad on C.

3. Construct the Kleisli category associated to a Kleisli triple.

Solution. We construct the category CT whose objects are the same as those of C and morphisms
f : A → B in CT are morphisms f : A → TB in C. Identities are given by η. The composition of
f : A→ TB and g : B → TC is

g∗ ◦ f

We can check that composition is associative:

(h∗ ◦ g)∗ ◦ f = h∗ ◦ g∗ ◦ f

and admits identities as neutral elements:

η∗B ◦ f = idTB ◦ f = f f∗ ◦ ηA = f

4. Show that every Kleisli triple induces a monad.

Solution. Suppose given a triple (T, η, (−)∗), we extend T as a functor by defining, for every
morphism f : A→ B,

Tf = (ηB ◦ f)∗

This is indeed a functor since, given g : B → C, we have

Tg ◦ Tf = (ηC ◦ g)∗ ◦ (ηB ◦ f)∗ = ((ηC ◦ g)∗ ◦ ηB ◦ f)∗ = (ηC ◦ g ◦ f)∗ = T (g ◦ f)

and
T idA = (ηA ◦ idA)∗ = η∗A = idTA

We take η as unit of the monad and define the multiplication by

µA = id∗TA

The family (ηA)A∈C is natural, i.e.

A TA

B TB

f

ηA

Tf

ηB

since, for f : A→ B, we have

Tf ◦ ηA = (ηB ◦ f)∗ ◦ ηA = ηB ◦ f

and similarly for (µA)A∈C ,

TTA TA

TTB TB

TTf

µA

Tf

µB



we have

µB ◦TTf = id∗TB ◦ (ηTB ◦ (ηB ◦ f)∗)∗ = (id∗TB ◦ ηTB ◦ (ηB ◦ f)∗)∗ = (idTB ◦ (ηB ◦ f)∗)∗ = (ηB ◦ f)∗∗

and on the other side

Tf ◦ µA = (ηB ◦ f)∗ ◦ id∗TA = ((ηB ◦ f)∗ ◦ idTA)
∗ = (ηB ◦ f)∗∗

Finally, we can check that the laws for monads are satisfied: we have

TTTA TTA

TTA TA

µTA

TµA

µA

µA

since

µA ◦ TµA = id∗TA ◦ (ηTA ◦ id∗TA)
∗ = (id∗TA ◦ ηTA ◦ id∗TA)

∗ = (idTA ◦ id∗TA)
∗ = id∗∗TA

and
µA ◦ µTA = id∗TA ◦ id∗TTA = (id∗TA ◦ idTTA)

∗ = id∗∗TA

as well as
TA TTA

TA
idTA

ηTA

µA

since
µA ◦ ηTA = id∗TA ◦ ηTA = idTA

and

TTA TA

TA

µA

TηA

idTA

since

µA ◦ TηA = id∗TA ◦ (ηTA ◦ ηA)∗ = (id∗TA ◦ ηTA ◦ ηA)∗ = (idTA ◦ ηA)∗ = η∗A = idTA

5. Conversely show that every monad induces a Kleisli triple.

Solution. Conversely, given a monad, we define for f : A→ TB

f∗ = µB ◦ Tf

and we check the laws:
η∗A = µA ◦ TηA = idTA

and
f∗ ◦ ηA = µB ◦ Tf ◦ ηA = µB ◦ ηTB ◦ f = f

and the last equality is similar to the associativity of the Kleisli category above.

We admit that the two transformations are mutually inverse.


	The exception monad
	More monads
	Monads in Haskell

