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I The exception monad

Given an adjunction F ⊣ G between categories C and D, the composite T = G ◦ F is always equipped
with a structure of a monad, and the goal of this question is to study an instance of this situation.

We write Set∗ for the category whose objects are pointed sets, i.e. pairs (A, a) where A is a set and
a ∈ A, and morphisms f : (A, a) → (B, b) are functions such that f(a) = b. Here, the distinguished
element of the pointed set will be seen as a particular value indicating an error or an exception.

1. Describe the forgetful functor U : Set∗ → Set.

Solution. The functor U sends a pointed set (A, a) to the underlying set A and a pointed function
to the function itself.

2. Construct a functor F : Set → Set∗ which is such that the sets Set∗(FA, (B, b)) and Set(A,U(B, b))
are isomorphic. We will admit that F is left adjoint to U (what would remain to be shown?).

Solution. We define the functor F as FA = (A ⊔ {⋆}, ⋆) and, given f : A→ B,

Ff : FA→ FB

A ∋ a 7→ f(a)

⋆ 7→ ⋆

Let us construct the bijection:

– given a pointed function f : A⊔{⋆} → B we obtain a function ϕ(f) : A→ B by precomposing
by the canonical inclusion ι : A→ A ⊔ {⋆}:

ϕ(f) = f ◦ ι

– given a function f : A→ B, we obtain a pointed function ψ(f) : A ⊔ {⋆} → (B, b) by

ψ(f) : A ⊔ {⋆} → B

A ∋ a 7→ f(a)

⋆ 7→ b

The two are easily shown to be mutually inverse. Namely, given a pointed function f : A⊔{⋆} → B,
we have for a ∈ A

ψ(ϕ(f))(a) = ψ(f ◦ ι)(a) = f ◦ ι(a) = f(a) ψ(ϕ(f))(⋆) = b

and thus ψ(ϕ(f)) = f because f is pointed. Conversely, given a function f : A → B, we have for
a ∈ A,

ϕ(ψ(f))(a) = ψ(f) ◦ ι(a) = f(a)

3. We recall that a monad consists of an endofunctor T : C → C together with two natural transfor-
mations µ : T ◦ T ⇒ T and η : idC ⇒ T such that the following diagrams commute:

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT µ

µ

T T ◦ T T

T
idT

ηT

µ

Tη

idT
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Describe a structure of monad on T = U ◦ F .

Solution. We have TA = A ⊔ {⋆}. We write TTA = A ⊔ {⋆, ⋆′} to distinguish between the two
added fresh elements. We define the natural transformations

ηA : A→ TA µA : TTA→ TA

by ηA is the canonical inclusion and

µA : A ⊔ {⋆, ⋆′} → A ⊔ {⋆}
A ∋ a 7→ a

⋆ 7→ ⋆

⋆′ 7→ ⋆

The family (ηA)A∈Set is natural: given a function f : A→ B, we have

A A ⊔ {⋆}

B B ⊔ {⋆}

f

ηA

f⊔{⋆}

ηB

since both morphisms send an element a ∈ A to f(a) ∈ B ⊔ {⋆}, and similarly for (µA)A∈Set.
Finally, we can check that the laws for monads are satisfied. Graphically, the associativity law is

A

⋆
⋆
⋆

A

⋆
⋆

A

⋆

= A

⋆
⋆
⋆

A

⋆
⋆

A

⋆

and unit laws are

A

⋆

A

⋆
⋆

A

⋆

= A

⋆

A

⋆

= A

⋆

A

⋆
⋆

A

⋆

4. Explain how a function A→ TB can be seen as “a function A→ B which might raise an exception”.

Solution. A function f : A→ B⊔{⋆} can be seen as a function f : A→ B which raises an exception
when its image is ⋆.

5. Given f : A → B an OCaml function which might raise an unique exception e and g : B → C
a function which might raise an unique exception e′, construct a function corresponding to the
composite of f and g which might raise a unique exception e′′.

Solution. We define the function

let comp f g x =

try g (f x)

with

| E -> raise E’’

| E’ -> raise E’’

whose type is

(’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)



6. Given an arbitrary monad T on a category C, we write CT for the category whose objects are the
objects of C and morphisms f : A → B in CT are morphisms f : A → TB in C, called the Kleisli
category associated to T . Define composition and identities and show that the axioms of categories
are satisfied.

Solution. Given two morphism f : A → B and g : B → C in CT , i.e. morphisms f : A → TB and
g : B → TC in C, we define composition as

A TB TTC TC
f Tg µC

We define the identity A → TA to be ηA. Given f : A → B in CT , we can check that identity is a
neutral element on the left (f ◦ idA = f):

TA TTB TB

A TB

Tf µB

ηA

f

ηTB
idTB

and on the right (idB ◦ f = f):

TTB

A TB TB

µB

f

TηB

idTB

and that composition is associative (h ◦ (g ◦ f) = (h ◦ g) ◦ f): given f : A→ TB, g : B → TC and
h : C → TD, the composite h ◦ (g ◦ f) is

A TB TTC TC TTD TD
f Tg µC Th µD

On the other side, the composite is slightly more complicated: we first compute the composite h◦ g

B TC TTD TD
g Th µD

and thus the composite (h ◦ g) ◦ f is

A TB TTC TTTD TTD TD
f Tg TTh TµD µD

and we have

A TB TTC TTTD TTD

TC TTD TD

f Tg

µC

TTh

µTD

TµD

µD

Th µD

7. Give an explicit description of SetT in the case of the above exception monad.

Solution. Graphically the composition of f : A→ B⊔{⋆} and g : B → C ⊔{⋆} performs as follows:

A B

⋆

C

⋆

⋆′

C

⋆

f g idC

which is precisely the expected composition. The category SetT can equivalently be described as
the category of sets and partial functions.



II More monads

1. A non-deterministic function is a function that might return a set of values instead of a single
value. How could we could we similarly define a category of non-deterministic functions by a Kleisli
construction?

Solution. For non-determinism, we want to take P : Set → Set which to a set A associates the
power set (= the set of subsets).

2. Recall the adjunctions defining a cartesian closed category. What is the associated monad?

Solution. In a CCC C, we have for every object B the following adjunction:

C ⊥ C

−×B

B⇒−

i.e. for every objects A and C, we have a natural bijection

C(A×B,C) ≃ C(A,B ⇒ C)

Fixing an object S, the induced monad is S ⇒ (S×A) which is called the “state monad”. Namely,
TA can be seen as A which takes a state S as input and returns a modified state as output. A
morphism f : A→ B in the Kleisli category is a morphism in

C(A,S ⇒ (S ×B))

which, by the adjunction is the same as a morphism in

C(S ×A,S ×B)

and it can be checked that the composition is the expected one, which “passes on the state”.

III Monads in Haskell

Here is an excerpt of http://www.haskell.org/haskellwiki/Monad:

Monads can be viewed as a standard programming interface to various data or control structures,

which is captured by the Monad class. All common monads are members of it:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

In addition to implementing the class functions, all instances of Monad should obey the

following equations:

return a >>= k = k a

m >>= return = m

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

1. What does the Maybe monad defined below do?

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

Solution. This is the exception monad.

2. What does the List monad defined below do?

http://www.haskell.org/haskellwiki/Monad


instance Monad [] where

m >>= f = concatMap f m

return x = [x]

Solution. This is the non-determinism monad.

A Kleisli triple (T, η, (−)∗) on a category C consists of

– a function T : Ob(C) → Ob(C),

– a function ηA : A→ TA for every object A of C,

– a morphism f∗ : TA→ TB for every morphism f : A→ TB,

such that for every objects A, B, C and morphisms f : A→ TB and g : B → TC,

η∗A = idTA f∗ ◦ ηA = f g∗ ◦ f∗ = (g∗ ◦ f)∗

Our aim is to show that this data amounts to specify a monad on C.

3. Construct the Kleisli category associated to a Kleisli triple.

Solution. We construct the category CT whose objects are the same as those of C and morphisms
f : A → B in CT are morphisms f : A → TB in C. Identities are given by η. The composition of
f : A→ TB and g : B → TC is

g∗ ◦ f

We can check that composition is associative:

(h∗ ◦ g)∗ ◦ f = h∗ ◦ g∗ ◦ f

and admits identities as neutral elements:

η∗B ◦ f = idTB ◦ f = f f∗ ◦ ηA = f

4. Show that every Kleisli triple induces a monad.

Solution. Suppose given a triple (T, η, (−)∗), we extend T as a functor by defining, for every
morphism f : A→ B,

Tf = (ηB ◦ f)∗

This is indeed a functor since, given g : B → C, we have

Tg ◦ Tf = (ηC ◦ g)∗ ◦ (ηB ◦ f)∗ = ((ηC ◦ g)∗ ◦ ηB ◦ f)∗ = (ηC ◦ g ◦ f)∗ = T (g ◦ f)

and
T idA = (ηA ◦ idA)∗ = η∗A = idTA

We take η as unit of the monad and define the multiplication by

µA = id∗TA

The family (ηA)A∈C is natural, i.e.

A TA

B TB

f

ηA

Tf

ηB

since, for f : A→ B, we have

Tf ◦ ηA = (ηB ◦ f)∗ ◦ ηA = ηB ◦ f

and similarly for (µA)A∈C ,

TTA TA

TTB TB

TTf

µA

Tf

µB



we have

µB ◦TTf = id∗TB ◦ (ηTB ◦ (ηB ◦ f)∗)∗ = (id∗TB ◦ ηTB ◦ (ηB ◦ f)∗)∗ = (idTB ◦ (ηB ◦ f)∗)∗ = (ηB ◦ f)∗∗

and on the other side

Tf ◦ µA = (ηB ◦ f)∗ ◦ id∗TA = ((ηB ◦ f)∗ ◦ idTA)
∗ = (ηB ◦ f)∗∗

Finally, we can check that the laws for monads are satisfied: we have

TTTA TTA

TTA TA

µTA

TµA

µA

µA

since

µA ◦ TµA = id∗TA ◦ (ηTA ◦ id∗TA)
∗ = (id∗TA ◦ ηTA ◦ id∗TA)

∗ = (idTA ◦ id∗TA)
∗ = id∗∗TA

and
µA ◦ µTA = id∗TA ◦ id∗TTA = (id∗TA ◦ idTTA)

∗ = id∗∗TA

as well as
TA TTA

TA
idTA

ηTA

µA

since
µA ◦ ηTA = id∗TA ◦ ηTA = idTA

and

TTA TA

TA

µA

TηA

idTA

since

µA ◦ TηA = id∗TA ◦ (ηTA ◦ ηA)∗ = (id∗TA ◦ ηTA ◦ ηA)∗ = (idTA ◦ ηA)∗ = η∗A = idTA

5. Conversely show that every monad induces a Kleisli triple.

Solution. Conversely, given a monad, we define for f : A→ TB

f∗ = µB ◦ Tf

and we check the laws:
η∗A = µA ◦ TηA = idTA

and
f∗ ◦ ηA = µB ◦ Tf ◦ ηA = µB ◦ ηTB ◦ f = f

and the last equality is similar to the associativity of the Kleisli category above.

We admit that the two transformations are mutually inverse.
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