Computing in the A-calculus

Samuel Mimram
samuel .mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

November 16, 2020

We recall that A-terms ¢ are of the form x (a variable) or Az.t (an abstraction) or tu (an
application). The B-reduction is the closure under context of the relation (Az.t)u — tlu/x],
i.e. the relation generated by

t—t' t—t u—u
(z.t)u — t{u/x] Azt — Azt tu — t'u tu — tu’

We write = (resp. <») for the reflexive and transitive (resp. and symmetric) closure of —.

1 Reduction graphs

The reduction graph of a A\-term t is the graph, whose vertices are A-terms, defined as the smallest
graph such that ¢ is a vertex and there is an arrow between two vertices ¢ and t’ whenever t — t'.

1. Write the respective reduction graphs of (Az.zz)(A\y.y)z and (Azy.z)((A\z.xzz)(Azy.zy)).

2. Can a reduction graph have loops? be infinite? be infinitely branching?

Solution. Yes (take Q = (Az.xz)(Ax.zx)), yes (take (Az.f(zz))(Az.f(xzz))) and no.

2 Computing in pure A-calculus
We encode the booleans true and false as the A-terms
T =X x\y.x 1L =Xx\y.y
1. Define a A-term if encoding conditional branching: we should have

if Ttu St if LtuSu

Solution. We define if = Abtu.btu.

2. Define A-terms encoding conjunction, disjunction and negation of booleans.
Solution. We define

and = Aab.if ab L or=MXab.if a Th not=MAa.if a L T

3. Define an encoding of pairs of terms in A-calculus, as well as projections.
Solution. We define

pair = Azyb.if by ™ = Ap.pT mTg = Ap.pL

The Church encoding of a natural number n in A-calculus is

M f(f...(fz))
—_——

n times


http://lambdacat.mimram.fr/

4. Define the interpretation of the successor, addition, multiplication and exponential functions.
Solution. We can define
suc = Anfx.f(nfzr) add =Imnfr.mf(nfz) mul=Imnfz.m(nf)z exp=Amn.nm
or

add = Amn.msucn mul = Amn.m(addn)0 exp = dmn.n(mulm)l

5. Define a function which tests whether its argument, a natural number, is 0 or not.

Solution. We define
iszero = Anzy.n(Az.y)x

6. Assuming given the predecessor function, define the subtraction function. Can you see how
to define the predecessor?

Solution. We define
sub = Amn.n pred m

A fizpoint combinator is a term Y such that
Yt&St(Ye)
7. Recall Russell’s paradox in naive set theory.

Solution. Consider the set r = {z |x € z}. f r € r then r ¢ r and if » & r then r € r. In
other words, r € r & r & r.

8. Encoding a set t as a predicate which indicates whether an element belongs to it, we can
write t u instead of u € ¢, and Az.t instead of {z | t}. Assuming given a term — for negation,
translate Russell’s paradox in A-calculus, and generalize it in order to obtain a fixpoint
combinator Y.

Solution. We write r = Az.—(zz) and we have rr = —(rr). Otherwise said, rr is a fixpoint
for —. Generalizing this to any function f instead of -, we define

Y = Af.(Ax. f(zx)) (M. f(zx))
9. Given a term t, show that the S-equivalence class of Y ¢ is always infinite.

Solution. We have
YtSt(Yt)Stt(Yr)S. ..

10. Program the factorial function in OCaml. Modify your implementation in order not to use
the rec keyword, but you can use the function fix defined by

let rec fix f = £ (fix f)

In practice, what happens when you evaluate this definition? Fix fix.

Solution. We define the auxiliary function

let fact_fun f n = if n = 0 then 1 else n * f (n-1)
from which we can deduce the implementation of factorial by
let fact = fix fact_fun

If we try to evaluate it, we obtain

Stack overflow during evaluation (looping recursion?).
but we can fix this with an n-expansion of the fix function:

let rec fix f x = £ (fix f) x



11.

12.

13.

14.

which is due to the particular evaluation strategy we have in OCaml.

Assuming given predecessor, define the factorial function in A-calculus.

Solution. We define
fact =Y (Afn.if (iszero n) 1 (f (pred n)))

The Fibonacci sequence (¢, )nen is defined by ¢g =0, ¢1 =1 and ¢, = dp—1 + Pni2. Give
a naive OCaml implementation of this function. What is (roughly) its complexity? Provide
a saner implementation.

Solution. The naive implementation is

let rec fib n =
if n = 0 then O
else if n = 1 then 1
else fib (n-1) + fib (n-2)

whose complexity is exponential. A saner version is obtained by computing two successive
values of fib:

let fib n =
let rec aux i (p,q) =
if i = 0 then (p,q) else aux (i-1) (q,p+q)
in
fst (aux n (0,1))

Implement the predecessor function in OCaml and in A-calculus.

Solution. For the predecessor, we can similarly compute the result by iterating n times the
function ¢ = (m,n) — (n,n+ 1) to (0,0):

let pred n =
let rec aux i (p,q) =
if i = 0 then (p,q) else aux (i-1) (q,q+1)
in
fst (aux n (0,0))

This easily translates into a A-term.

Show that © = (Azf.f(zxf))(Axf.f(zzf)) is also a fixpoint combinator (due to Turing).
What is the advantage over Y?

Solution. We have

Ot = (af.f(axf))(Aef.f(waf))t
= (L (Oaff@nf))Oaf.fazf) )t
= H(Aef.faxf)) Oaf.f(aaf))t)
— +(61)

If we look precisely at the situation with Y, we have

Yt =AMz f(xz)) Az f(x2)))t
= (Az.t(zzx))(Az.t(zz))
— t((Az.t(zx))(Ax.t(zx)))
«— t(Yt)

So the situation is slightly simpler: we have Ot — t(Ot) as opposed to only Yt <+ t(Yt).



	Reduction graphs
	Computing in pure -calculus

