
Computing in the λ-calculus

Samuel Mimram
samuel.mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

November 16, 2020

We recall that λ-terms t are of the form x (a variable) or λx.t (an abstraction) or tu (an
application). The β-reduction is the closure under context of the relation (λx.t)u → t[u/x],
i.e. the relation generated by

(λx.t)u→ t[u/x]

t→ t′

λx.t→ λx.t′
t→ t′

tu→ t′u

u→ u′

tu→ tu′

We write
∗→ (resp.

∗↔) for the reflexive and transitive (resp. and symmetric) closure of →.

1 Reduction graphs

The reduction graph of a λ-term t is the graph, whose vertices are λ-terms, defined as the smallest
graph such that t is a vertex and there is an arrow between two vertices t and t′ whenever t→ t′.

1. Write the respective reduction graphs of (λx.xx)(λy.y)z and (λxy.x)((λx.xx)(λxy.xy)).

2. Can a reduction graph have loops? be infinite? be infinitely branching?

Solution. Yes (take Ω = (λx.xx)(λx.xx)), yes (take (λx.f(xx))(λx.f(xx))) and no.

2 Computing in pure λ-calculus

We encode the booleans true and false as the λ-terms

> = λx.λy.x ⊥ = λx.λy.y

1. Define a λ-term if encoding conditional branching: we should have

if > t u ∗→ t if ⊥ t u ∗→ u

Solution. We define if = λbtu.btu.

2. Define λ-terms encoding conjunction, disjunction and negation of booleans.

Solution. We define

and = λab. if a b⊥ or = λab. if a> b not = λa. if a⊥>

3. Define an encoding of pairs of terms in λ-calculus, as well as projections.

Solution. We define

pair = λxyb. if b x y π1 = λp.p> π2 = λp.p⊥

The Church encoding of a natural number n in λ-calculus is

λfx. f(f . . . (f︸ ︷︷ ︸
n times

x))

1

http://lambdacat.mimram.fr/


4. Define the interpretation of the successor, addition, multiplication and exponential functions.

Solution. We can define

suc = λnfx.f(nfx) add = λmnfx.mf(nfx) mul = λmnfx.m(nf)x exp = λmn.nm

or

add = λmn.m sucn mul = λmn.m(addn)0 exp = λmn.n(mulm)1

5. Define a function which tests whether its argument, a natural number, is 0 or not.

Solution. We define
iszero = λnxy.n(λz.y)x

6. Assuming given the predecessor function, define the subtraction function. Can you see how
to define the predecessor?

Solution. We define
sub = λmn.n predm

A fixpoint combinator is a term Y such that

Y t
∗↔ t (Y t)

7. Recall Russell’s paradox in naive set theory.

Solution. Consider the set r = {x | x 6∈ x}. If r ∈ r then r 6∈ r and if r 6∈ r then r ∈ r. In
other words, r ∈ r ⇔ r 6∈ r.

8. Encoding a set t as a predicate which indicates whether an element belongs to it, we can
write t u instead of u ∈ t, and λx.t instead of {x | t}. Assuming given a term ¬ for negation,
translate Russell’s paradox in λ-calculus, and generalize it in order to obtain a fixpoint
combinator Y.

Solution. We write r = λx.¬(xx) and we have rr = ¬(rr). Otherwise said, rr is a fixpoint
for ¬. Generalizing this to any function f instead of ¬, we define

Y = λf.(λx.f(xx))(λx.f(xx))

9. Given a term t, show that the β-equivalence class of Y t is always infinite.

Solution. We have
Y t

∗↔ t (Y t)
∗↔ t (t (Y t))

∗↔ . . .

10. Program the factorial function in OCaml. Modify your implementation in order not to use
the rec keyword, but you can use the function fix defined by

let rec fix f = f (fix f)

In practice, what happens when you evaluate this definition? Fix fix.

Solution. We define the auxiliary function

let fact_fun f n = if n = 0 then 1 else n * f (n-1)

from which we can deduce the implementation of factorial by

let fact = fix fact_fun

If we try to evaluate it, we obtain

Stack overflow during evaluation (looping recursion?).

but we can fix this with an η-expansion of the fix function:

let rec fix f x = f (fix f) x

2



which is due to the particular evaluation strategy we have in OCaml.

11. Assuming given predecessor, define the factorial function in λ-calculus.

Solution. We define
fact = Y (λfn. if (iszero n) 1 (f (pred n)))

12. The Fibonacci sequence (φn)n∈N is defined by φ0 = 0, φ1 = 1 and φn = φn−1 + φn+2. Give
a naive OCaml implementation of this function. What is (roughly) its complexity? Provide
a saner implementation.

Solution. The naive implementation is

let rec fib n =

if n = 0 then 0

else if n = 1 then 1

else fib (n-1) + fib (n-2)

whose complexity is exponential. A saner version is obtained by computing two successive
values of fib:

let fib n =

let rec aux i (p,q) =

if i = 0 then (p,q) else aux (i-1) (q,p+q)

in

fst (aux n (0,1))

13. Implement the predecessor function in OCaml and in λ-calculus.

Solution. For the predecessor, we can similarly compute the result by iterating n times the
function φ = (m,n) 7→ (n, n+ 1) to (0, 0):

let pred n =

let rec aux i (p,q) =

if i = 0 then (p,q) else aux (i-1) (q,q+1)

in

fst (aux n (0,0))

This easily translates into a λ-term.

14. Show that Θ = (λxf.f(xxf))(λxf.f(xxf)) is also a fixpoint combinator (due to Turing).
What is the advantage over Y?

Solution. We have

Θt = (λxf.f(xxf))(λxf.f(xxf))t

→ (λf.f((λxf.f(xxf))(λxf.f(xxf))f))t

→ t((λxf.f(xxf))(λxf.f(xxf))t)

= t(Θt)

If we look precisely at the situation with Y, we have

Y t = (λf.(λx.f(xx))(λx.f(xx)))t

→ (λx.t(xx))(λx.t(xx))

→ t((λx.t(xx))(λx.t(xx)))

← t(Y t)

So the situation is slightly simpler: we have Θt
∗→ t(Θt) as opposed to only Y t

∗↔ t(Y t).

3


	Reduction graphs
	Computing in pure -calculus

