TD5 - Realizability

Samuel Mimram

22 November 2012

We write Λ for the set of λ -terms and Π for the set of stacks (sequences $t_1 \cdot t_2 \cdot \cdot \cdot t_n$ of λ -terms). Processes are elements (t, π) of $\Lambda \times \Pi$, often written $t \star \pi$.

1. Recall the definition of λ -terms, as well as reduction \succ for the Krivine machine (operating on processes).

An element of $\mathcal{P}(\Pi)$ is called a *truth value*. Suppose fixed a set \bot closed under anti-reduction. A term $t \in \Lambda$ realizes a truth value $U \in \Pi$, what we write $t \Vdash U$ when $\forall \pi \in U, t \star \pi \in \bot$.

2. We suppose fixed a set \mathcal{T} of generators of given arity and write \mathcal{T}^* for the set of generated terms. We also suppose fixed a set \mathcal{R} of propositions of given first-order and first-order arities. The syntax of second order formulas is

$$A ::= t \mid X \mid R(A_1, \dots, A_m, t_1, \dots, t_n) \mid A \Rightarrow B \mid \forall x.A \mid \forall X.A$$

where $t \in \mathcal{T}^*$ and $R \in \mathcal{R}$. Recall the rules of second order logic in natural deduction.

We define an interpretation $[\![A]\!] \in \mathcal{P}(\Pi)$ by induction on the formula A by

$$\llbracket A \Rightarrow B \rrbracket = \{t \cdot \pi \: / \: t \in |A|, \pi \in \llbracket B \rrbracket \} \qquad \llbracket \forall x.A \rrbracket = \bigcup_{a \in \mathcal{T}^*} \llbracket A[a/x] \rrbracket \qquad \llbracket \forall X.A \rrbracket = \bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V/X] \rrbracket \qquad \llbracket \bot \rrbracket = \Pi \qquad \llbracket \top \rrbracket = \emptyset$$

where $|A| = \{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket, t \star \pi \in \bot \}$ denotes the set of *realizers* of the formula A. Above, we have supposed fixed an interpretation of the first- and second-order free variables (by abuse of notation, given $V \in \mathcal{P}(\Pi)$, we still write V for a variable whose interpretation is V). We write $t \vdash A$ when $t \in |A|$ and say that t realizes A.

- 3. Show that $t \Vdash A \Rightarrow B$ and $u \Vdash A$ implies $tu \Vdash B$.
- 4. Show that if for every $u \in \Lambda$, $u \Vdash A$ implies $tu \Vdash B$, then $\lambda x.tx \Vdash A \Rightarrow B$.

We admit the adequation lemma: if $x_1:A_1,\ldots,x_n:A_n\vdash t:A$ is derivable and $\forall i,t_i\Vdash A_i$ then $t[t_1/x_1,\ldots,t_n/x_n]\Vdash A$.

- 6. Show that $\theta: \forall X.(X \Rightarrow X)$ implies that for every $(t, \pi) \in \Lambda \times \Pi$ we have $\theta \star t \cdot \pi \succ t \star \pi$ (use the closure by anti-reduction of $\{t \star \pi\}$ for \bot).
- 7. We write $\operatorname{Bool}(x) = \forall X.X(0) \Rightarrow X(1) \Rightarrow X(x)$ (which is equivalent to $x = 0 \lor x = 1$). Show that $\vdash \theta : \operatorname{Bool}(0)$ implies $\theta \star t \cdot u \cdot \pi \succ t \star \pi$. And similarly for $\vdash \theta : \operatorname{Bool}(1)$.
- 8. We write $\exists x.A$ for the formula $\forall X.(\forall x.(A \Rightarrow X)) \Rightarrow X$. What is its interpretation? What is the interpretation of $\exists x. \operatorname{Bool}(x)$ if we suppose that $\mathcal{T}^* = \{0, 1\}$?
- 9. Define similarly the formulas $A \wedge B$ and $A \vee B$, \bot and $\neg A$. What is their interpretation?
- 10. Given $U, V \in \mathcal{P}(\Pi)$, we write $U \leq V$ when there exists θ such that $\theta \Vdash U \Rightarrow V$. Show that \leq is a preorder and $(\mathcal{P}(\Pi), \leq)$ a boolean algebra. Which one is it when $\mathbb{1} = \emptyset$?
- 11. Prove the adequation lemma.