Travaux Dirigés Pullbacks, monos, epis and subobjects

 λ -calculs et catégories (10 octobre 2016)

1 Pullbacks

In this exercise, we study the notion of pullback (called "produit fibré" in French), an important variation of the notion of "cartesian product" studied during the lectures and a previous TD. A commutative diagram in a category $\mathscr C$

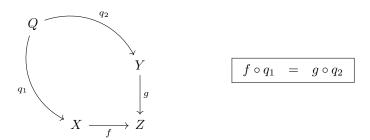
$$P \xrightarrow{p_2} Y$$

$$\downarrow p_1 \qquad (*) \qquad \downarrow g$$

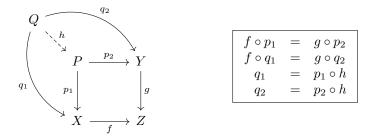
$$X \xrightarrow{f} Z$$

$$f \circ p_1 = g \circ p_2$$

is called a pullback diagram when the following property holds: for every commutative diagram



there exists a unique morphism $h:Q\to P$ making the diagram below commute:



§1. Given two functions $f: X \to Z$ and $g: Y \to Z$, describe explicitly a set P and a pair of functions $p_1: P \to X$ and $p_2: P \to Y$ defining a pullback diagram of the form (*) in the category Sets of sets and functions. Hint: the terminology "produit fibré" comes from this construction.

1

§2. Given two pullback diagrams

in a category \mathscr{C} , show that the commutative diagram

$$Y'' \xrightarrow{p'} Y' \xrightarrow{p} Y$$

$$g'' \downarrow \qquad \qquad (c) \qquad \qquad \downarrow^g$$

$$X'' \xrightarrow{f'} X' \xrightarrow{f} X$$

obtained by "glueing" the two diagrams (a) and (b) defines a pullback diagram in the category \mathscr{C} .

§3. Suppose given three commutative diagrams (a)(b)(c) in a category \mathscr{C} . We have seen in the previous question that when (b) is a pullback diagram,

(a) is a pullback diagram \Rightarrow (c) is a pullback diagram

Establish the converse property that

(c) is a pullback diagram \Rightarrow (a) is a pullback diagram

when (b) is a pullback diagram.

§4. Exhibit an example of three commutative diagrams (a)(b)(c) such that

(a) and (c) are pullback diagrams... but (b) is not a pullback diagram!

Hint: one can take X, X'' singleton sets and $X' = \{x_1, x_2\}$ a two-element set in the category $\mathscr{C} = \mathbf{Sets}$.

2 Monomorphisms and epimorphisms

§1. An arrow $m:A\to B$ of a category $\mathscr C$ is called a monomorphism (mono for short) when m is left-simplifiable in the sense that

$$m \circ f = m \circ q \quad \Rightarrow \quad f = q$$

for every pair of arrows $f,g:X\to A$. Show that a function $m:A\to B$ is a mono in the category Sets precisely when it is an injective function.

§2. An arrow $e:A\to B$ of a category $\mathscr C$ is called an epimorphism (epi for short) when e is right-simplifiable in the sense that

$$f \circ e = q \circ e \implies f = q$$

for every pair of arrows $f, g: B \to Y$. Show that a function $e: A \to B$ is an epi in the category Sets precisely when it is a surjective function.

§3. Show that in a category \mathscr{C} , the composite $n \circ m : A \to C$ of two monos $m : A \to B$ and $n : B \to C$ is a mono, and that the composite of two epis is an epi.

§4. Show that an arrow $m:A\to B$ is a mono precisely when the commutative diagram

$$\begin{array}{c|c} A & \xrightarrow{id} & A \\ \downarrow^{id} & & \downarrow^{m} \\ A & \xrightarrow{m} & B \end{array}$$

is a pullback diagram in the category \mathscr{C} . Explain what the property means in the specific case of a function $m:A\to B$ in the category Sets.

§5. Show that every pullback diagram

$$V \xrightarrow{p} U$$

$$m' \downarrow \quad (\circledast) \quad \downarrow^{m}$$

$$B \xrightarrow{f} A$$

in a category \mathscr{C} satisfies the following property:

$$m: U \to A \text{ is a mono} \Rightarrow m': V \to B \text{ is a mono.}$$

Show that the converse property does not hold by constructing a counter-example in the category \mathbf{Sets} .

3 Comma categories and subobject categories

§1. Every object A in a category $\mathscr C$ induces a category $\mathscr C/A$ called the comma category on the object A, and defined in the following way. The objects of $\mathscr C/A$ are the pairs (X,f) consisting of an object $X\in\mathscr C$ and of an arrow

$$f: X \to A$$

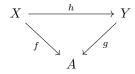
with target A. The arrows of the category \mathscr{C}/A

$$h : (X, f) \longrightarrow (Y, g)$$

are the morphisms

$$h : X \longrightarrow Y$$

of the underlying category \mathscr{C} , making the diagram below commute:



Establish our claim above that \mathscr{C}/A defines a category.

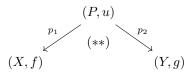
§2. Show that a commutative diagram

$$P \xrightarrow{p_2} Y$$

$$\downarrow^{p_1} \qquad (*) \qquad \downarrow^g$$

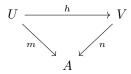
$$X \xrightarrow{f} Z$$

in the category $\mathscr C$ is the same thing as a diagram



in the category \mathscr{C}/Z . Show moreover that the commutative diagram (*) is a pullback in the category \mathscr{C} precisely when the span diagram (**) defines a cartesian product of (X,f) and (Y,g) in the comma category \mathscr{C}/Z . Deduce from this that the pullback diagram (*) associated to a pair of morphisms $f:X\to Z$ and $g:Y\to Z$ is unique up to isomorphism.

§3. Every object A in a category $\mathscr C$ induces a category $\operatorname{Sub}(A)$ called the category of subobjects of A, and defined in the following way. Its objects (U,m) are the pairs consisting of an object $U \in \mathscr C$ and of a mono $m: U \to A$ with target A. Its morphisms $h: (U,m) \to (V,n)$ are the morphisms $h: U \to V$ of the underlying category $\mathscr C$ making the diagram



commute in the category \mathscr{C} . The category $\operatorname{Sub}(A)$ is thus the full subcategory of monos in the comma category \mathscr{C}/A . Show that the category $\operatorname{Sub}(A)$ is a preorder category, in the sense there exists at most one arrow $h:(U,m)\to (V,n)$ between two objects (U,m) and (V,n).

§4. Show that in the case $\mathscr{C}=\mathbf{Sets}$, one recovers the powerset $(\mathscr{P}(A),\subseteq)$ with subsets $U,V\subseteq A$ ordered by inclusion $U\subseteq V$, as the ordered set of equivalence classes associated to the preorder $\mathbf{Sub}(A)$. A useful convention in category theory is to identify the preorder category $\mathbf{Sub}(A)$ with the ordered set $(\mathscr{P}(A),\subseteq)$ in that case.

§5. A category $\mathscr C$ has pullbacks when there exists a pullback diagram (*) for every pair of arrows $f:X\to Z$ and $g:Y\to Z$. Show that in a category $\mathscr C$ with pullbacks, every arrow $f:B\to A$ induces a monotone function

$$f^* : \mathbf{Sub}(A) \longrightarrow \mathbf{Sub}(B)$$

defined by transporting every mono $m:U\to A$ to the mono $m':V\to B$ using the pullback diagram (\circledast) in Exercise 2.5. Give an explicit description of the resulting monotone function

$$f^* : \mathscr{P}(A) \longrightarrow \mathscr{P}(B)$$

in the case when $\mathscr{C}=\mathbf{Sets}$ and when $f:A\to B$ is a function between two sets A and B.