Travaux Dirigés

Distributivity laws between functors and monads Grothendieck construction and set-theoretic colimits

 λ -calculs et catégories (9 décembre 2019)

1 Distributivity laws between functors and monads

§1. Suppose given two categories \mathscr{A} and \mathscr{B} , each of them equipped with a monad

$$(S,\mu_S,\eta_S):\mathscr{A}\longrightarrow\mathscr{A}\qquad (T,\mu_T,\eta_T):\mathscr{B}\longrightarrow\mathscr{B}$$

A homomorphism

$$(F,\lambda)$$
 : $(\mathscr{A},S) \longrightarrow (\mathscr{B},T)$ (1)

is defined as a functor $F:\mathscr{A}\to\mathscr{B}$ equipped with distributivity law

$$\lambda \quad : \quad T \circ F \Rightarrow F \circ S$$

making the diagrams of natural transformations below commute:

$$\begin{array}{c|c} T \circ T \circ F & \xrightarrow{T \circ \lambda} & T \circ F \circ S & \xrightarrow{\lambda \circ S} & F \circ S \circ S & F \\ \mu_T \circ F & & & & & \\ T \circ F & & & & & \\ T \circ F & & & & & \\ \hline \end{array} \begin{array}{c} (a) & & & & & \\ F \circ \mu_S & & \\ F$$

§1. Formulate the two commutative diagrams (a) and (b) as families of commutative diagrams between maps living in the category \mathscr{B} .

2. Depict the commutative diagrams (a) and (b) in the language of string diagrams.

§3. Show that every homomorphism (F, λ) as in (1) induces a functor

$$\widetilde{F}$$
 : $\mathbf{Alg}(S) \longrightarrow \mathbf{Alg}(T)$

making the diagram below commute:

$$\begin{array}{ccc} \mathbf{Alg}(S) & & \xrightarrow{\widetilde{F}} & \mathbf{Alg}(T) \\ & & & \\ U_S & & & & \\ \downarrow & & (*) & & & \\ & & & & \downarrow \\ & & & & & \\ \mathscr{A} & & & & \\ & & & & F & & \\ \end{array}$$

where U_S and U_T are the forgetful functors associated to the monads S and T, respectively.

§4. Conversely, show that every functor

$$\widetilde{F}$$
 : $\mathbf{Alg}(S) \longrightarrow \mathbf{Alg}(T)$

making the diagram (*) commute induces a distributivity law $\lambda : T \circ F \Rightarrow F \circ S$ making the two diagrams (a) and (b) commute.

§5. Conclude that a homomorphism $(F, \lambda) : (\mathscr{A}, S) \to (\mathscr{B}, T)$ between two monads may be equivalently defined as a pair (F, \widetilde{F}) of functors

$$F: \mathscr{A} \longrightarrow \mathscr{B} \qquad \qquad \widetilde{F}: \mathbf{Alg}(S) \longrightarrow \mathbf{Alg}(T)$$

making the diagram (*) commute.

§6. Deduce that there is a category Mon of monads and homomorphisms between them.

§7. Describe the free abelian group functor $F : \mathbf{Sets} \to \mathbf{Sets}$ which transports every set A to the free abelian group FA generated by the set A.

§8. Consider the free monoid monad $T: \mathbf{Sets} \to \mathbf{Sets}$ and construct a family of functions

$$\lambda_A : TF(A) \longrightarrow FT(A)$$

parametrized by an object $A \in \mathscr{A}$ and check that the family λ is natural in A and makes the diagrams (a) and (b) commute.

§9. From this, deduce the existence of a functor

$$F : Monoid \longrightarrow Monoid$$

from the category of monoids and homomorphisms, making the diagram below commute:

$$\begin{array}{ccc} \mathbf{Monoid} & & \stackrel{\widetilde{F}}{\longrightarrow} & \mathbf{Monoid} \\ & & \\ U & & & \\ \downarrow & & (*) & & \\ \mathbf{Sets} & & & \\$$

§10. Describe the natural transformations μ_F and η_F equipping the functor F with a monad structure (F, μ_F, η_F) .

§11. A distributivity law

$$\Lambda \quad : \quad T \circ S \Rightarrow S \circ T$$

between two monads on the same category

$$(S,\mu_S,\eta_S):\mathscr{A}\longrightarrow\mathscr{A}$$
 $(T,\mu_T,\eta_T):\mathscr{A}\longrightarrow\mathscr{A}$

is a natural transformation making the diagrams below commute

Depict the commutative diagrams (c) and (d) in the language of string diagrams.

§12. Show that every distributive law $\lambda : T \circ S \Rightarrow S \circ T$ between two monads S and T on the same category \mathscr{A} induces a monad structure on the composite functor $S \circ T : \mathscr{A} \to \mathscr{A}$.

§13. Show that the natural transformation λ defined in §7. defines a distributivity law between the monads S = F and T.

§14. Show that the monad $S \circ T$: Sets \rightarrow Sets associated to the distributivity law λ : $T \circ S \Rightarrow S \circ T$ coincides with the free algebra monad (here, by algebra, we mean \mathbb{Z} -algebra).

2 Grothendieck construction and colimits computed in the category of sets and functions

We recall that a contravariant presheaf on a small category $\mathscr C$ is a functor

$$\varphi : \mathscr{C}^{op} \longrightarrow \mathbf{Sets}.$$

The purpose of this exercise is to compute the colimit of this functor, seen as a diagram in the category Sets. Every contravariant presheaf φ induces a category $\operatorname{Groth}[\varphi]$ together with a projection functor

$$\pi[\varphi] \quad : \quad \mathbf{Groth}[\varphi] \longrightarrow \mathscr{C}. \tag{2}$$

The objects of the category are the pairs (c,x) with c an object of $\mathscr C$ and x an element of $\varphi(x)$; the maps

$$(c, x) \longrightarrow (d, y)$$

of the category are maps $f:c \to d$ of the underlying category $\mathscr C$ such that

$$\varphi(f)(y) = x$$

§1. Show that these data define a category $\operatorname{Groth}[\varphi]$ together with a functor (2).

§2. Show that every natural transformation

$$\theta \quad : \quad \varphi \Rightarrow \phi \quad : \quad \mathscr{C}^{op} \longrightarrow \mathbf{Sets}$$

induces a functor

$$\mathbf{Groth}[heta] \quad : \quad \mathbf{Groth}[arphi] \longrightarrow \mathbf{Groth}[\psi]$$

making the diagram below commute

§3. Conversely, show that every functor

$$F : \operatorname{Groth}[\varphi] \longrightarrow \operatorname{Groth}[\psi]$$

making the diagram below commute

is of the form $F = \mathbf{Groth}[\theta]$ for a unique natural transformation

 $\theta \quad : \quad \varphi \Rightarrow \psi \quad : \quad \mathscr{C}^{op} \longrightarrow \mathbf{Sets}$

§4. For every object c of the category \mathscr{C} , construct a function

$$\theta_c : \varphi(c) \longrightarrow \pi_0(\mathbf{Groth}[\varphi])$$

where the set

 $\pi_0(\mathbf{Groth}[\varphi])$

denotes the set of connected components of the category $\operatorname{Groth}[\varphi]$, defined as the connected components of the underlying graph.

§5. Show that the diagram below commutes

for every map $f:c \to d$ in the category \mathscr{C} . Deduce from this that the family θ defines a natural transformation

$$\theta : \varphi \Rightarrow \pi_0(\mathbf{Groth}[\varphi])$$

and thus a cone.

§5. Show that the cone is a colimiting cone, and thus that the colimit of the diagram

$$\varphi : \mathscr{C}^{op} \longrightarrow \mathbf{Sets}$$

coincides with the set

 $\pi_0(\mathbf{Groth}[\varphi])$

of connected components of the Grothendieck category $\operatorname{Groth}[\varphi]$. From this, deduce that the category Sets has all small colimits.