TD2 – Graphs and the Yoneda lemma

Samuel Mimram

October 3, 2016

1 Graphs as presheaf categories

1. Show that the category **Cat**(**Gr**, **Set**) of functors and natural transformations from the category with two objects 0, 1 and four morphisms

 $\operatorname{id}_0: 0 \to 0 \qquad \operatorname{id}_1: 1 \to 1 \qquad s, t: 1 \to 0$

to the category **Set** of sets and functions defines the category of graphs, which is usually denoted **Graph**.

- 2. Reformulate the definition of a category as a graph with some structure.
- 3. Explain that the category $Cat(Gr_2, Set)$ of functors from the category Gr_2 with three objects 0, 1, 2 and nine morphisms

 $\mathrm{id}_0: 0 \to 0 \qquad \mathrm{id}_1: 1 \to 1 \qquad \mathrm{id}_2: 2 \to 2 \qquad s_1, t_1: 2 \to 1 \qquad s_0, t_0: 1 \to 0 \qquad s, t: 2 \to 0$

with

 $s_0 \circ s_1 = s_0 \circ t_1 = s$ et $t_0 \circ s_1 = t_0 \circ t_1 = t$

defines a category of 2-graphs and morphisms of 2-graphs.

4. Reformulate the definition of 2-categories using the notion of 2-graph.

Given a category \mathcal{C} , the category of *presheaves* $\hat{\mathcal{C}}$ is the category of functors $\mathcal{C}^{\text{op}} \to \mathbf{Set}$ and natural transformations between them.

2 The Yoneda lemma

- 1. Define a graph Y_0 such that given a graph G, the vertices of G are in bijection with graph morphisms from Y_0 to G. Similarly, define a graph Y_1 such that we have a bijection between edges of G and graph morphisms from Y_1 to G.
- 2. Given a category \mathcal{C} , we define the Yoneda functor $Y : \mathcal{C} \to \hat{\mathcal{C}}$ by $YAB = \mathcal{C}(B, A)$ for objects $A, B \in \mathcal{C}$. Complete the definition of Y.
- 3. In the case of **Gr**, what are the graphs obtained as the image of the two objects? A presheaf of the form *YA* for some object *A* is called a *representable* presheaf.
- 4. Yoneda lemma: show that for any category \mathcal{C} , presheaf $P \in \hat{\mathcal{C}}$, and object $A \in \mathcal{C}$, we have $P(A) \cong \hat{\mathcal{C}}(YA, P)$.
- 5. Show that the Yoneda embedding is full and faithful.