TD3 – Algebras

Samuel Mimram

18 November 2015

1 Algebras for an endofunctor

An algebra for an endofunctor $F: \mathcal{C} \to \mathcal{C}$ is a pair (A, f) where A is an object of \mathcal{C} and $f: FA \to A$ a morphism of \mathcal{C} . A morphism $h: (A, f) \to (B, g)$ between two such algebras consists of a morphism $h: A \to B$ such that

$$FA \xrightarrow{Fh} FB$$

$$\downarrow g$$

$$A \xrightarrow{h} B$$

In the following, we mostly consider algebras in **Set**.

- Define inductively the functions length: 'a list -> int (giving the length of a list), map: ('a -> 'b) -> 'a list -> 'b list (applying a function to all elements of a list), double: 'a list -> 'a list (which duplicates every successive element, for instance double [1;2;3] = [1;1;2;2;3;3]).
- 2. We suppose given a type 'a ilist of infinite lists with elements of type 'a. Define coinductively odd: 'a ilist -> 'a ilist (keeping elements of a list at odd positions), merge: 'a ilist -> 'a ilist -> 'a ilist (taking alternatively elements from one of two lists).
- 3. Show that $[0,S]:1+\mathbb{N}\to\mathbb{N}$ is an initial algebra for the endofunctor T(X)=1+X of **Set**.
- 4. Use this fact to define the function $f: \mathbb{N} \to \mathbb{Q}$ such that $f(n) = 2^{-n}$.
- 5. Show that two initial algebras of an endofunctor are isomorphic (via morphisms of algebras).
- 6. Show that an initial algebra $f: FA \to A$ of an endofunctor F is an isomorphism.
- 7. Show that the set $A^* = \biguplus_{n \in \mathbb{N}} A^n$, which can be seen as the set of lists of elements of A, is an initial algebra for $T(X) = 1 + A \times X$.
- 8. Use this fact to define the length function $\ell: A^* \to \mathbb{N}$ and the double function $d: A^* \to A^*$. Show that $\ell \circ d(l) = 2\ell(l)$ for every $l \in A^*$.
- 9. Explain briefly how we could interpret simple inductive types of OCaml by using initial algebras.
- 10. What is the initial algebra for $T(X) = 1 + X \times X$? For $T(X) = X^*$?

2 Coalgebras for an endofunctor

A coalgebra for $F: \mathcal{C} \to \mathcal{C}$ is a pair (A, f) with $f: A \to FA$. Morphisms are defined similarly as previously.

- 1. Show that the set $A^{\mathbb{N}}$ of *streams* is a final coalgebra for the endofunctor $T(X) = A \times X$.
- 2. Use this to define, given $a \in A$, the constant stream equal to a. Define the function $\mathbb{N} \to \mathbb{N}^{\mathbb{N}}$ which to n associates the stream $(n, n+1, n+2, \ldots)$. Define the function $A^{\mathbb{N}} \times A^{\mathbb{N}} \to A^{\mathbb{N}}$ which merges two streams. Define the functions $A^{\mathbb{N}} \to A^{\mathbb{N}}$ keeping even and odd elements.
- 3. Show that final coalgebras are unique up to isomorphism and are isomorphisms.
- 4. Show that merge(even(l), odd(l)) = l for every $l \in A^{\mathbb{N}}$.
- 5. A bisimulation on $A^{\mathbb{N}}$ is a relation $R \subseteq A^{\mathbb{N}} \times A^{\mathbb{N}}$ such that R(x :: l, x' :: l') implies x = x' and R(l, l'). The coinductive proof principle says that if R(l, l') for some bisimulation R then l = l'. Assuming this principle, show again the result of previous question.
- 6. Show the coinductive proof principle.
- 7. What is the final coalgebra of $T(X) = 1 + A \times X$? of T(X) = 1 + X?

3 Algebras for a monad

An algebra for a monad (T, μ, η) is a pair (A, f) with $f: TA \to A$ such that

$$TTA \xrightarrow{Tf} TA$$

$$\downarrow_{A} \downarrow \qquad \qquad \downarrow_{f}$$

$$TA \xrightarrow{f} A$$

$$A \xrightarrow{\eta_{A}} TA$$

$$\downarrow_{f}$$

$$A \xrightarrow{\eta_{A}} TA$$

A morphism of T-algebras is defined as a morphism between algebras for a functor. Given a category \mathcal{C} and T a monad on \mathcal{C} , we write \mathcal{C}^T for the category of T-algebras.

- 1. Consider the monad T on **Set** induced by the adjunction whose right adjoint is the forgetful functor $U: \mathbf{Mon} \to \mathbf{Set}$ where \mathbf{Mon} is the category of monoids and morphisms of monoids. Describe this monad. What is an algebra for this monad?
- 2. Show that the forgetful functor $\mathcal{C}^T \to \mathcal{C}$ has a left adjoint.
- 3. Fix a monad T on \mathcal{C} and consider the category whose objects are triples (\mathcal{D}, F, G) with $F: \mathcal{C} \to \mathcal{D}$ left adjoint to $G: \mathcal{D} \to \mathcal{C}$ such that $G \circ F = T$, and whose morphisms $H: (\mathcal{D}, F, G) \to (\mathcal{D}', F', G')$ are functors $H: \mathcal{D} \to \mathcal{D}'$ such that $H \circ F = F'$ and $G' \circ H = G$. Show that the above adjunction is a terminal object in this category.
- 4. Show that the Kleisli category C_T is an initial object in this category.

References

[1] B. Jacobs and J. Rutten. An introduction to (co)algebra and (co)induction. 2011.