Algebras for a monad

Samuel Mimram

1 Adjunctions for a monad

A monad (T, μ, η) is an endofunctor $T : \mathcal{C} \to \mathcal{C}$ equipped with two natural transformations $\mu: T \circ T \to T$ and $\eta: \mathrm{id}_{\mathcal{C}} \to T$ such that, for every $A \in \mathcal{C}$,

$TTTA - T\mu_A$	$\rightarrow TTA$		$TA \xrightarrow{T\eta_A} TTA \xleftarrow{\eta_{TA}} TA$
μ_{TA}	$\downarrow \mu_A$	and	id_{TA} \downarrow id_{TA} \downarrow id_{TA}
$TTA \xrightarrow{\mu_A} TA$			TA

An algebra for a monad (T, μ, η) on a category \mathcal{C} is a pair (A, a) with $a: TA \to A$ such that

$$\begin{array}{cccc} TTA & \xrightarrow{Ta} TA & & A & \stackrel{\eta_A}{\longrightarrow} TA \\ \mu_A \downarrow & \downarrow^a & \text{and} & & \downarrow^a \\ TA & \xrightarrow{a} A & & & A \end{array}$$

A morphism of T-algebras $f: (A, a) \to (B, b)$ is a morphism $f: A \to B$ in \mathcal{C} such that

$$\begin{array}{ccc} TA & \xrightarrow{Tf} & TB \\ a \downarrow & & \downarrow b \\ A & \xrightarrow{f} & B \end{array}$$

Given a category \mathcal{C} and T a monad on \mathcal{C} , we write \mathcal{C}^T for the category of T-algebras.

1. Show that the forgetful functor $U : Mon \to Set$ has a left adjoint. What is the induced monad T on Set? What is its category of algebras?

Solution. The left adjoint $F : \mathbf{Set} \to \mathbf{Mon}$ associates to a set A its free monoid A^* , whose elements are words $[a_1, \ldots, a_n]$ over A (we have already seen this). An algebra for the induced monad T on **Set** is a monoid. Namely, given an algebra (A, f), we can define a structure of monoid on A whose multiplication and unit are given by

$$a \times b = f([a, b]) \qquad \qquad 1f([])$$

Given three elements a, b, c, we have

$$(a \times b) \times c = f[f([a, b]), c] = f[f([a, b]), f([c])] = f(\mu([[a, b], [c]])) = f([a, b, c])$$

and similarly

$$a \times (b \times c) = f([a, b, c])$$

and the multiplication is associative. Moreover,

$$1 \times a = f([f([]), a]) = f([f([]), f([a])]) = f(\mu([[], [a]])) = f([a]) = a$$

and similarly

$$a \times 1 = a$$

Conversely, the structure of algebra is entirely determined by these operations since one can show as above that

$$f([a_1, \dots, a_n, a_{n+1}]) = f([f([a_1, \dots, a_n]), a_{n+1}]) = f([a_1, \dots, a_n]) \times a_{n+1}$$

and thus, by recurrence,

$$f([a_1,\ldots,a_n]) = (((1 \times a_1) \times a_2) \times \ldots) \times a_n$$

2. What are the algebras of the finite powerset monad on Set?

Solution. Idempotent commutative monoids, i.e. unital semi-lattices.

3. Given a right adjoint functor $U : \mathcal{D} \to \mathcal{C}$, show that the category \mathcal{D} is not always isomorphic to the category of algebras for the induced monad (hint: consider the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$).

Solution. Consider the forgetful functor $U : \mathbf{Top} \to \mathbf{Set}$. The left adjoint $F : \mathbf{Set} \to \mathbf{Top}$ equips a set with the discrete topology. The induced monad $T : U \circ F$ is the identity monad on **Set**, whose algebras are sets (equipped with the identity morphism).

4. Given a monad $T : \mathcal{C} \to \mathcal{C}$, show that the forgetful functor $\mathcal{C}^T \to \mathcal{C}$ has a left adjoint, and that the induced monad is T.

Solution. We define the left adjoint $F : \mathcal{C} \to \mathcal{C}^T$ as the functor which to a set A associates the free algebra (TA, μ_A) , which is obviously an algebra by the axioms for monads. To a function $f : A \to B$, we associate the function $Tf : TA \to TB$, which is a morphism of algebras by naturality of μ . Given $A \in C$ and $B = (B, b) \in \mathcal{C}^T$, we define a bijection

$$\phi: \mathcal{C}^T(FA, B) \simeq \mathcal{C}(A, B): \psi$$

as follows. Given a morphism of algebras $f: TA \to B$ in \mathcal{C}^T , we define

$$\phi(f) = A \xrightarrow{\eta_A} TA \xrightarrow{f} B$$

and, given $f: A \to B$ in \mathcal{C} , we define

$$\psi(f) = TA \xrightarrow{Tf} TB \xrightarrow{b} B$$

which is a morphism of algebras since

$$TTA \xrightarrow{TTf} TTB \xrightarrow{Tb} TB$$

$$\mu_A \downarrow \qquad \qquad \downarrow \mu_B \qquad \qquad \downarrow_b$$

$$TA \xrightarrow{Tf} TB \xrightarrow{b} B$$

(left: naturality of μ , right: b is an algebra). Given $f: TA \to B$ in \mathcal{C}^T , we have $\psi \circ \phi(f) = f$ since

$$\begin{array}{ccc} TA & \xrightarrow{T\eta_A} & TTA & \xrightarrow{Tf} & TB \\ & & & \downarrow^{\mu_A} & & \downarrow_b \\ & & & \downarrow^{\mu_A} & & \downarrow_b \\ & & & & \downarrow^{\mu_A} & & \downarrow_b \\ & & & & \downarrow^{\mu_A} & & \downarrow_b \end{array}$$

(left: laws of monad, right: f is a morphism of algebras). Given $f : A \to B$ in \mathcal{C} , we have $\phi \circ \psi(f) = f$ since

$$\begin{array}{ccc} TA & \xrightarrow{Tf} & TB & \xrightarrow{b} & B \\ \eta_A & & & & & & \\ A & \xrightarrow{\eta_B} & & & & & \\ A & \xrightarrow{f} & B & & & & & \text{id}_B \end{array}$$

The induced monad is the endofunctor T = UF. Its unit is

$$\phi(\mathrm{id}_{FA}) = \eta_A$$

Its multiplication is

$$U\psi(\mathrm{id}_{UFA}) = \mu_A$$

5. Construct the Kleisli category C_T associated to a monad. Show that the "forgetful functor" $C_T \to C$ has a left adjoint and that the induced monad is T.

Solution. The forgetful functor $U : \mathcal{C}_T \to \mathcal{C}$ is defined by UA = TA and, for $f : A \to TB$, $Uf = f \circ \eta_A$. The left adjoint $F : \mathcal{C} \to \mathcal{C}_T$ is defined by FA = A and, for $f : A \to B$, $Ff = \eta_B \circ f$.

6. [Optional] Fix a monad T on C and consider the category whose objects are triples (\mathcal{D}, F, G) with $F : C \to \mathcal{D}$ left adjoint to $G : \mathcal{D} \to C$ such that $G \circ F = T$, and whose morphisms $H : (\mathcal{D}, F, G) \to (\mathcal{D}', F', G')$ are functors $H : \mathcal{D} \to \mathcal{D}'$ such that $H \circ F = F'$ and $G' \circ H = G$. Show that the adjunctions associated to C^T and C_T are respectively terminal and initial in this category.

2 The Kleisli category as the category of free algebras

Our goal here is to show that the Kleisli category C_T associated to a monad T on C is the category of free algebras. A functor $F : C \to D$ is *full* (resp. *faithful*) when for every pair of objects A and B, the function

$$F_{A,B}: \mathcal{C}(A,B) \to \mathcal{D}(A,B)$$

is surjective (resp. injective).

7. Show that the "free algebra" functor $F : \mathcal{C}_T \to \mathcal{C}^T$ is full and faithful.

An equivalence between categories \mathcal{C} and \mathcal{D} consists in functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ such that $G \circ F \simeq \mathrm{id}_{\mathcal{C}}$ and $F \circ G \simeq \mathrm{id}_{\mathcal{D}}$.

- 8. Show that an equivalence of categories is the same as a functor $F : \mathcal{C} \to \mathcal{D}$ which is essentially surjective (every object of \mathcal{D} is isomorphic to one in the image of F) and full and faithful.
- 9. Show that the category C_T is equivalent to the full subcategory of C^T whose objects are free algebras.