Graphs and the Yoneda lemma

Samuel Mimram

samuel.mimram@lix.polytechnique.fr
http://lambdacat.mimram.fr

December 13, 2021

1 Graphs as presheaf categories

By a *graph*, we always mean here a directed multigraph (i.e. edges have a direction, there can be multiple edges with the same source and the same target, there can be edges from a vertex to the same vertex, and the sets of vertices and edges can be infinite).

- 1. Give a proper definition of the notion of graph considered here.
- 2. Define a category **G** such that functors $\mathbf{G}^{\mathrm{op}} \to \mathbf{Set}$ are in bijection with graphs.
- 3. Show that natural transformations between functors $G^{op} \to \mathbf{Set}$ correspond to morphisms of graphs.

Given a category C, the category \hat{C} of *presheaves* over C is the category whose objects are functors $C^{op} \to \mathbf{Set}$ and morphisms are natural transformations.

2 The Yoneda lemma

- 1. Define a graph Y_0 such that given a graph G, the vertices of G are in bijection with graph morphisms from Y_0 to G. Similarly, define a graph Y_1 such that we have a bijection between edges of G and graph morphisms from Y_1 to G.
- 2. Given a category \mathcal{C} , we define the Yoneda functor $Y: \mathcal{C} \to \hat{\mathcal{C}}$ by $YAB = \mathcal{C}(B, A)$ for objects $A, B \in \mathcal{C}$. Complete the definition of Y.
- 3. In the case of C = G, what are the graphs obtained as the image of the two objects?

A presheaf of the form YA for some object A is called a representable presheaf.

- 4. Yoneda lemma: show that for any category \mathcal{C} , presheaf $P \in \hat{\mathcal{C}}$, and object $A \in \mathcal{C}$, we have $PA \cong \hat{\mathcal{C}}(YA, P)$ [hint: first define a function $\hat{\mathcal{C}}(YA, P) \to PA$].
- 5. Show that the Yoneda functor $Y: \mathcal{C} \to \hat{\mathcal{C}}$ is full and faithful.
- 6. Show that the category of graphs has finite products.
- 7. Show that any presheaf category is cartesian closed. Describe this structure in the case of the category of graphs.

3 2-graphs

- 1. Explain that a category is a graph with additional structure.
- 2. Define a notion of 2-graph such that a 2-category is a 2-graph with additional structure. Express this notion as a presheaf category $\hat{\mathbf{G}}'$.
- 3. Show that any functor $F: \mathcal{C} \to \mathcal{D}$ canonically induces a functor $\hat{F}: \hat{\mathcal{D}} \to \hat{\mathcal{C}}$.
- 4. Describe the "inclusion" functor $\hat{I}: \hat{\mathbf{G}}' \to \hat{\mathbf{G}}$.
- 5. Show that this function \hat{I} admits both a left and a right adjoint.

4 The simplicial category

The presimplicial category Δ_{+} is the category whose objects are the sets

$$[n] = \{0, 1, \dots, n\}$$

for $n \in \mathbb{N}$ and morphisms are increasing injective functions.

- 1. What is the full subcategory of Δ_+ on the objects [0] and [1] and what are presheaves over it?
- 2. What is the full subcategory of Δ_+ on the objects [0], [1] and [2] and what are presheaves over it?
- 3. For each $n \in \mathbb{N}$, define a "small" family of functions $s_i^n : [n] \to [n+1]$ (indexed by i) such that every morphism of Δ_+ can be obtained as a composite of such morphisms.
- 4. Give relations satisfied by the above generating functions.
- 5. Describe the category of presheaves over Δ_+ .

The simplicial category Δ is the category with the sets [n] as objects for $n \in \mathbb{N}$ and morphisms are weakly increasing functions.

6. Describe the presheaves over Δ .