TD4 – Cartesian and monoidal categories

Samuel Mimram

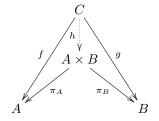
24 October 2013

1 Cartesian categories

Suppose given a category C. A *cartesian product* of two objects A and B is given by an object $A \times B$ together with two morphisms

$$\pi_1: A \times B \to A$$
 and $\pi_2: A \times B \to B$

such that for every object C and morphisms $f: C \to A$ and $g: C \to B$, there exists a unique morphism $h: C \to A \times B$ making the diagram



commute. We also recall that a *terminal object* in a category is an object 1 such that for every object A there exists a unique morphism $f_A : A \to 1$. A category is *cartesian* when it has finite products, i.e. has a terminal object and every pair of objects admits a product.

- 1. Suppose that (E, \leq) is a poset. We associate to it category whose objects are elements of E and such that there exists a unique morphism between object a and b iff $a \leq b$. What is an initial object and a product in this category?
- 2. Show that the category **Set** of sets and functions is cartesian.
- 3. Show that two terminal objects in a category are necessarily isomorphic.
- 4. Similarly, show that the cartesian product of two objects is defined up to isomorphism.
- 5. Show that for every object A of a cartesian category, the objects $1 \times A$, A and $A \times 1$ are isomorphic.
- 6. Show that for every objects A and B, $A \times B$ and $B \times A$ are isomorphic.
- 7. Show that for every objects A, B and C, $(A \times B) \times C$ and $A \times (B \times C)$ are isomorphic.
- 8. The notion of *coproduct* is dual to the notion of product. Show that **Set** has all coproducts and an initial object.
- 9. Show that the category **Rel** of sets and relations is cartesian.
- 10. Show that the category **Cat** is cartesian.
- 11. Given a cartesian category \mathcal{C} , show that the cartesian product induces a functor $A, B \mapsto A \times B : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$.

- 12. Given a category \mathcal{C} , show that $\operatorname{Hom}_{\mathcal{C}}(-,-)$ induces a functor $\mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{\mathbf{Set}}$.
- 13. Given an adjunction $F \dashv G : \mathcal{C} \to \mathcal{D}$, we have a natural bijection $\mathcal{D}(F-,-) \cong \mathcal{C}(-,G-)$. Elaborating on previous question, make the naturality condition explicit.

2 Monoidal categories

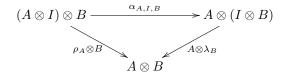
A monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$ is a category \mathcal{C} equipped with a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, an object $I \in \mathcal{C}$, and three natural bijections of components

 $\alpha_{A,B,C}: (A \otimes B) \otimes C \to A \otimes (B \otimes C) \qquad \qquad \lambda_A: I \otimes A \to A \qquad \qquad \rho_A: A \otimes I \to A$

such that the diagrams

$$\begin{array}{c|c} ((A \otimes B) \otimes C) \otimes D \xrightarrow{\alpha_{A,B,C} \otimes D} (A \otimes (B \otimes C)) \otimes D \xrightarrow{\alpha_{A,B \otimes C,D}} A \otimes ((B \otimes C) \otimes D) \\ & & & \downarrow \\ & & & \downarrow \\ (A \otimes B) \otimes (C \otimes D) \xrightarrow{\alpha_{A,B,C \otimes D}} A \otimes (B \otimes (C \otimes D)) \end{array}$$

and



commute.

A braided monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho, \gamma)$ is a monoidal category equipped with a natural bijection γ of components

$$\gamma_{A,B}: A \otimes B \to B \otimes A$$

such that suitable diagrams commute. A symmetric monoidal category is a braided monoidal category such that $\gamma_{B,A} \circ \gamma_{A,B} = \mathrm{id}_{A \otimes B}$ for every objects A and B.

- 1. Show that every cartesian category \mathcal{C} can be equipped with a structure of symmetric monoidal category.
- 2. Define a notion of *monoid* in a monoidal category (so that a monoid in the cartesian category **Set** corresponds to the usual notion). Define similarly morphisms of monoids.
- 3. What is a monoid in $(Cat, \times, 1)$?
- 4. Show that a monoidal category is cartesian (with tensor as product) if and only if every object is equipped with a natural structure of comonoid.
- 5. We write **Vect** for the category of k-vector spaces (where k is a fixed field) and linear functions. Show that this category is cartesian.
- 6. Given a basis for A and B, describe a basis for $A \times B$.
- 7. Show that the forgetful functor $U: \mathbf{Vect} \to \mathbf{Set}$ admits a left adjoint $F: \mathbf{Set} \to \mathbf{Vect}$.
- 8. Given vector spaces A, B and C, we write Bilin(A, B; C) for the set of bilinear applications from $A \times B$ to C. Show that there exists a vector space, written $A \otimes B$ such that we have a (natural) bijection

$$\operatorname{Bilin}(A, B; C) \cong \operatorname{Vect}(A \otimes B; C)$$

It can be helpful to write $A \otimes B$ as a quotient of the vector space $F(U(A) \times U(B))$.

9. Given a basis for A and B, describe a basis for $A \otimes B$.