
Realizability

Samuel Mimram

7 November 2022

Second-order logic. We write T for the set of terms over some fixed signature. The syntax of
second-order formulas is

A ::= X(a1, . . . , an) | A ⇒ B | ∀x.A | ∀X.A

where ai ∈ T , each second-order variable X having a fixed arity n. We consider typing rules which
extend those of simply-typed λ-calculus by

Γ ⊢ t : A

Γ ⊢ t : ∀x.A
Γ ⊢ t : A

Γ ⊢ t : ∀X.A

Γ ⊢ t : ∀x.A
Γ ⊢ t : A[a/x]

Γ ⊢ t : ∀X.A

Γ ⊢ t : A[B/X]

where, in the first two rules, we suppose x and X not free in Γ respectively. Note that we have three
kinds of variables in Γ ⊢ t : A: those declared in Γ and occurring in t (standing for λ-terms), those
occurring in formulas (standing for terms in T) and second-order variables (standing for formulas).

1. Show that identity can be given the type ∀X.X ⇒ X.

2. Recall the elimination rule for ∨. How can we encode this operator into our logic?

3. Similarly, provide an encoding of the operators ∧, ⊥, ¬, first and second order existential
quantifications.

Realizability. We write Λ for the set of λ-terms and Π for the set of stacks, which are sequences
t1 · t2 · · · tn of λ-terms. Processes are elements (t, π) of Λ × Π, often written t ⋆ π. The reduction
relation ≻ between processes is given by the following two rules:

tu ⋆ π ≻ t ⋆ u · π
λx.t ⋆ u · π ≻ t[u/x] ⋆ π

An element of P(Π) is called a truth value. Suppose fixed a set ‚ of processes closed under
anti-reduction. We define an interpretation JAK ∈ P(Π) by induction on the formula A by

JA ⇒ BK = {t · π | t ∈ |A|, π ∈ JBK} J∀x.AK =
⋃
a∈T

JA[a/x]K J∀X.AK =
⋃

V ∈P(Π)

JA[V/X]K

where
|A| = {t ∈ Λ | ∀π ∈ JAK, t ⋆ π ∈ ‚}

denotes the set of realizers of the formula A. Above, we have supposed fixed an interpretation of
the first- and second-order free variables (by abuse of notation, given V ∈ P(Π), we still write V
for a variable whose interpretation is V). We write t ⊩ A when t ∈ |A| and say that t realizes A.

4. What are J⊥K and |⊥|?

5. Show that |∀X.A| =
⋂

V ∈P(Π) |A[V/X]|.

Identity-like terms. Our goal is now to characterize the behavior of terms of type ∀X.X ⇒ X.

6. Give examples of terms which are of type ∀X.X ⇒ X.

7. Show that (λx.x) ⋆ u · π ≻ u ⋆ π.

A term t ∈ Λ is identity-like when t ⋆ u · π ≻ u ⋆ π for every u ∈ Λ and π ∈ Π.

8. Show that if t is identity-like then t ⊩ ∀X.X ⇒ X.

We temporarily admit the adequation lemma: if ⊢ t : A is derivable then t ⊩ A.

9. Show the converse to previous question, i.e. ⊢ t : ∀X.X ⇒ X implies that t is identity-like
(hint: use a suitably chosen ‚).

10. Give an example of an identity-like term which is not the identity, and even non-typable.

Booleans.

11. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which
encodes the fact that x is a boolean.

12. Show that ⊢ t : Bool(0) implies t ⋆ u · v · π ≻ t ⋆ π (and similarly for ⊢ t : Bool(1)).

Other consequences of the adequation lemma.

13. Show that there is no term such that ⊢ t : ⊥.

14. Show that typable λ-terms are normalizing with respect to the call-by-name strategy.

The adequation lemma.

15. Show that t ⊩ A ⇒ B and u ⊩ A implies tu ⊩ B.

16. Show that if for every u ∈ Λ, u ⊩ A implies t[u/x] ⊩ B, then λx.t ⊩ A ⇒ B.

17. Prove the adequation lemma: ⊢ t : A derivable implies t ⊩ A.

Classical logic. We extend λ-terms by adding constants cc and kπ for every π ∈ Π with reduction
rules

cc ⋆ t · π ≻ t ⋆ kπ · π kπ ⋆ t · ρ ≻ t ⋆ π

18. Show that the formula ∀X.(X ∨ ¬X) is realized.

References

[1] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2009.

2

