Realizability

Samuel Mimram

7 November 2022

Second-order logic. We write \mathcal{T} for the set of terms over some fixed signature. The syntax of second-order formulas is

$$A \qquad ::= \qquad X(a_1, \dots, a_n) \quad | \quad A \Rightarrow B \quad | \quad \forall x.A \quad | \quad \forall X.A$$

where $a_i \in \mathcal{T}$, each second-order variable X having a fixed arity n. We consider typing rules which extend those of simply-typed λ -calculus by

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x.A} \qquad \qquad \frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall X.A} \qquad \qquad \frac{\Gamma \vdash t : \forall x.A}{\Gamma \vdash t : A[a/x]} \qquad \qquad \frac{\Gamma \vdash t : \forall X.A}{\Gamma \vdash t : A[B/X]}$$

where, in the first two rules, we suppose x and X not free in Γ respectively. Note that we have three kinds of variables in $\Gamma \vdash t$: A: those declared in Γ and occurring in t (standing for λ -terms), those occurring in formulas (standing for terms in \mathcal{T}) and second-order variables (standing for formulas).

- 1. Show that identity can be given the type $\forall X.X \Rightarrow X$.
- 2. Recall the elimination rule for \lor . How can we encode this operator into our logic?
- 3. Similarly, provide an encoding of the operators \land , \bot , \neg , first and second order existential quantifications.

Realizability. We write Λ for the set of λ -terms and Π for the set of stacks, which are sequences $t_1 \cdot t_2 \cdots t_n$ of λ -terms. Processes are elements (t, π) of $\Lambda \times \Pi$, often written $t \star \pi$. The reduction relation \succ between processes is given by the following two rules:

$$tu \star \pi \succ t \star u \cdot \pi$$
$$\lambda x.t \star u \cdot \pi \succ t[u/x] \star \pi$$

An element of $\mathcal{P}(\Pi)$ is called a *truth value*. Suppose fixed a set \bot of processes closed under anti-reduction. We define an interpretation $\llbracket A \rrbracket \in \mathcal{P}(\Pi)$ by induction on the formula A by

$$\llbracket A \Rightarrow B \rrbracket = \{t \cdot \pi \mid t \in |A|, \pi \in \llbracket B \rrbracket\} \qquad \llbracket \forall x.A \rrbracket = \bigcup_{a \in \mathcal{T}} \llbracket A[a/x] \rrbracket \qquad \llbracket \forall X.A \rrbracket = \bigcup_{V \in \mathcal{P}(\Pi)} \llbracket A[V/X] \rrbracket$$

where

$$A| = \{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket, t \star \pi \in \bot \}$$

denotes the set of *realizers* of the formula A. Above, we have supposed fixed an interpretation of the first- and second-order free variables (by abuse of notation, given $V \in \mathcal{P}(\Pi)$, we still write V for a variable whose interpretation is V). We write $t \Vdash A$ when $t \in |A|$ and say that t realizes A.

- 4. What are $\llbracket \bot \rrbracket$ and $\lvert \bot \rvert$?
- 5. Show that $|\forall X.A| = \bigcap_{V \in \mathcal{P}(\Pi)} |A[V/X]|$.

Identity-like terms. Our goal is now to characterize the behavior of terms of type $\forall X.X \Rightarrow X$.

- 6. Give examples of terms which are of type $\forall X.X \Rightarrow X$.
- 7. Show that $(\lambda x.x) \star u \cdot \pi \succ u \star \pi$.
- A term $t \in \Lambda$ is *identity-like* when $t \star u \cdot \pi \succ u \star \pi$ for every $u \in \Lambda$ and $\pi \in \Pi$.
 - 8. Show that if t is identity-like then $t \Vdash \forall X.X \Rightarrow X$.

We temporarily admit the *adequation lemma*: if $\vdash t : A$ is derivable then $t \Vdash A$.

- 9. Show the converse to previous question, i.e. $\vdash t : \forall X.X \Rightarrow X$ implies that t is identity-like (hint: use a suitably chosen \perp).
- 10. Give an example of an identity-like term which is not the identity, and even non-typable.

Booleans.

- 11. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which encodes the fact that x is a boolean.
- 12. Show that $\vdash t$: Bool(0) implies $t \star u \cdot v \cdot \pi \succ t \star \pi$ (and similarly for $\vdash t$: Bool(1)).

Other consequences of the adequation lemma.

- 13. Show that there is no term such that $\vdash t : \bot$.
- 14. Show that typable λ -terms are normalizing with respect to the call-by-name strategy.

The adequation lemma.

- 15. Show that $t \Vdash A \Rightarrow B$ and $u \Vdash A$ implies $tu \Vdash B$.
- 16. Show that if for every $u \in \Lambda$, $u \Vdash A$ implies $t[u/x] \Vdash B$, then $\lambda x.t \Vdash A \Rightarrow B$.
- 17. Prove the adequation lemma: $\vdash t : A$ derivable implies $t \Vdash A$.

Classical logic. We extend λ -terms by adding constants cc and k_{π} for every $\pi \in \Pi$ with reduction rules

$$\mathsf{cc} \star t \cdot \pi \succ t \star \mathsf{k}_{\pi} \cdot \pi \qquad \qquad \mathsf{k}_{\pi} \star t \cdot \rho \succ t \star \pi$$

18. Show that the formula $\forall X.(X \lor \neg X)$ is realized.

References

[1] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2009.