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Second-order logic. We write T for the set of terms over some fixed signature. The syntax of
second-order formulas is

A BES X(ay,...,an) | A=DB | Vz.A | VX.A

where a; € T, each second-order variable X having a fixed arity n. We consider typing rules which
extend those of simply-typed A-calculus by
T'Ft: A 'kt A 'kt:vVz.A 'kt:vX.A
'kt:Va.A 'Ht:vX.A TkHt: Ala/z) I'Ht: A[B/X]
where, in the first two rules, we suppose z and X not free in I" respectively. Note that we have three

kinds of variables in ' - ¢ : A: those declared in I and occurring in ¢ (standing for A-terms), those
occurring in formulas (standing for terms in 7") and second-order variables (standing for formulas).

1. Show that identity can be given the type VX.X = X.
2. Recall the elimination rule for V. How can we encode this operator into our logic?

3. Similarly, provide an encoding of the operators A, L, —, first and second order existential
quantifications.

Realizability. We write A for the set of A-terms and I for the set of stacks, which are sequences
ty - ty---t, of Aterms. Processes are elements (t,7) of A x II, often written ¢ x 7. The reduction
relation > between processes is given by the following two rules:
tuxm=txu-m
Artxu-m = tu/x] * 7

An element of P(IT) is called a truth value. Suppose fixed a set 1L of processes closed under
anti-reduction. We define an interpretation [A] € P(II) by induction on the formula A by

[A= Bl ={t-w|te|A,rec[B]} [xA]l=J[Al/z] [XAl= |J [AV/X]]
a€T VePr()
where
[Al={te A|Vre[A],txm e 1}

denotes the set of realizers of the formula A. Above, we have supposed fixed an interpretation of
the first- and second-order free variables (by abuse of notation, given V' € P(II), we still write V
for a variable whose interpretation is V). We write ¢ IF A when ¢ € |A| and say that ¢ realizes A.



4. What are [L] and |L|?
5. Show that |VX. Al = Ny cp(m |AV/X]].

Identity-like terms. Our goal is now to characterize the behavior of terms of type VX.X = X.
6. Give examples of terms which are of type VX.X = X.
7. Show that (Az.x)xu -7 > u*m.

A term t € A is identity-like when t xu - m > u x 7 for every u € A and 7 € II.
8. Show that if ¢ is identity-like then ¢ IF VX. X = X.

We temporarily admit the adequation lemma: if Ft: A is derivable then t I+ A.

9. Show the converse to previous question, i.e. - ¢t : VX.X = X implies that ¢ is identity-like
(hint: use a suitably chosen ).

10. Give an example of an identity-like term which is not the identity, and even non-typable.

Booleans.

11. Suppose that our signatures contains constants 0 and 1. Define a predicate Bool(x), which
encodes the fact that z is a boolean.

12. Show that ¢ : Bool(0) implies t xu - v - m > t x 7 (and similarly for I ¢ : Bool(1)).

Other consequences of the adequation lemma.
13. Show that there is no term such that ¢ : L.

14. Show that typable A-terms are normalizing with respect to the call-by-name strategy.

The adequation lemma.
15. Show that ¢t IF A = B and u I+ A implies tu IF B.
16. Show that if for every u € A, u I+ A implies t[u/z] IF B, then Az.t I+ A = B.

17. Prove the adequation lemma: ¢ : A derivable implies ¢ I+ A.

Classical logic. We extend A-terms by adding constants cc and k;; for every 7 € II with reduction
rules

cckxkt-m=txky-m krpxt-p>=txm

18. Show that the formula VX.(X V —X) is realized.
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