Laboratoire d'informatique de l'École polytechnique

Séminaire par Jérémie Bettinelli: «Convergence of uniform noncrossing partitions toward the Brownian triangulation»

Speaker: Jérémie Bettinelli
Location: Salle Philippe Flajolet
Date: Mer. 23 mai. 2018, 11h00-12h00

La prochaine séance du séminaire Combi du Plateau de Saclay aura lieu ce mercredi à 11h dans la salle Philippe Flajolet du LIX. Nous aurons le plaisir d'écouter Jérémie Bettinelli nous parler de Convergence of uniform noncrossing partitions toward the Brownian triangulation. Le résumé est disponible ci-dessous.

Abstract: We give a short proof that a uniform noncrossing partition of the regular n-gon weakly converges toward Aldous's Brownian triangulation of the disk, in the sense of the Hausdorff topology. This result was first obtained by Curien and Kortchemski, using a more complicated encoding. Thanks to a result of Marchal on strong convergence of Dyck paths toward the Brownian excursion, we furthermore give an algorithm that allows to recursively construct a sequence of uniform noncrossing partitions for which the previous convergence holds almost surely. In addition, we also treat the case of uniform noncrossing pair partitions of even-sided polygons.