| Public Member Functions | |
| double | F (PVectorMatrix T) | 
| Computes the log normalizer  . | |
| PVectorMatrix | gradF (PVectorMatrix T) | 
| Computes  . | |
| double | G (PVectorMatrix H) | 
| Computes  . | |
| PVectorMatrix | gradG (PVectorMatrix H) | 
| Computes  . | |
| PVectorMatrix | t (PVector x) | 
| Computes the sufficient statistic  . | |
| double | k (PVector x) | 
| Computes the carrier measure  . | |
| PVectorMatrix | Lambda2Theta (PVectorMatrix L) | 
| Converts source parameters to natural parameters. | |
| PVectorMatrix | Theta2Lambda (PVectorMatrix T) | 
| Converts natural parameters to source parameters. | |
| PVectorMatrix | Lambda2Eta (PVectorMatrix L) | 
| Converts source parameters to expectation parameters. | |
| PVectorMatrix | Eta2Lambda (PVectorMatrix H) | 
| Converts expectation parameters to source parameters. | |
| double | density (PVector x, PVectorMatrix param) | 
| Computes the density value  . | |
| PVector | drawRandomPoint (PVectorMatrix L) | 
| Draws a point from the considered distribution. | |
| double | KLD (PVectorMatrix LP, PVectorMatrix LQ) | 
| Computes the Kullback-Leibler divergence between two multivariate Gaussian distributions. | |
![\[ f(x; \mathbf{\Theta}) = \exp \left( \langle t(x), \mathbf{\Theta} \rangle - F(\mathbf{\Theta}) + k(x) \right) \]](form_0.png) 
 where  are the natural parameters. This class implements the different functions allowing to express a multivariate Gaussian distribution as a member of an exponential family.
 are the natural parameters. This class implements the different functions allowing to express a multivariate Gaussian distribution as a member of an exponential family.


 
 | double jMEF.MultivariateGaussian.density | ( | PVector | x, | |
| PVectorMatrix | param | |||
| ) | 
Computes the density value  .
. 
| x | point | |
| param | parameters (source, natural, or expectation) | 
 
 | PVector jMEF.MultivariateGaussian.drawRandomPoint | ( | PVectorMatrix | L | ) | 
Draws a point from the considered distribution.
| L | source parameters   | 
| PVectorMatrix jMEF.MultivariateGaussian.Eta2Lambda | ( | PVectorMatrix | H | ) | 
Converts expectation parameters to source parameters.
| H | expectation parameters   | 
 
 | double jMEF.MultivariateGaussian.F | ( | PVectorMatrix | T | ) | 
Computes the log normalizer  .
. 
| T | natural parameters   | 
 
 | double jMEF.MultivariateGaussian.G | ( | PVectorMatrix | H | ) | 
Computes  .
. 
| H | expectation parameters   | 
 
 | PVectorMatrix jMEF.MultivariateGaussian.gradF | ( | PVectorMatrix | T | ) | 
Computes  .
. 
| T | natural   | 
 
 | PVectorMatrix jMEF.MultivariateGaussian.gradG | ( | PVectorMatrix | H | ) | 
Computes  .
. 
| H | expectation parameters   | 
 
 | double jMEF.MultivariateGaussian.k | ( | PVector | x | ) | 
Computes the carrier measure  .
. 
| x | a point | 
 
 | double jMEF.MultivariateGaussian.KLD | ( | PVectorMatrix | LP, | |
| PVectorMatrix | LQ | |||
| ) | 
Computes the Kullback-Leibler divergence between two multivariate Gaussian distributions.
| LP | source parameters   | |
| LQ | source parameters   | 
 
 | PVectorMatrix jMEF.MultivariateGaussian.Lambda2Eta | ( | PVectorMatrix | L | ) | 
Converts source parameters to expectation parameters.
| L | source parameters   | 
 
 | PVectorMatrix jMEF.MultivariateGaussian.Lambda2Theta | ( | PVectorMatrix | L | ) | 
Converts source parameters to natural parameters.
| L | source parameters   | 
 
 | PVectorMatrix jMEF.MultivariateGaussian.t | ( | PVector | x | ) | 
Computes the sufficient statistic  .
. 
| x | a point | 
 
 | PVectorMatrix jMEF.MultivariateGaussian.Theta2Lambda | ( | PVectorMatrix | T | ) | 
Converts natural parameters to source parameters.
| T | natural parameters   | 
 
 
 1.5.9
 1.5.9