Library ZFord

Require Import ZFnats.
Require Export ZF.
Import IZF.



Fixpoint plump ub (p:Acc in_set ub) x : Prop :=
  (forall y (q: y \in ub), y \in x -> plump y (Acc_inv p _ q) y) /\
  (forall z y (q: y \in ub), plump y (Acc_inv p _ q) z ->
   z \incl y -> y \in x -> z \in x).

Instance wf_morph : Proper (eq_set ==> iff) (Acc in_set).

Qed.

Scheme Acc_indd := Induction for Acc Sort Prop.

Lemma plump_morph : forall x x' p p' y y',
  x == x' -> y == y' -> (plump x p y <-> plump x' p' y').

Lemma plump_bound : forall ub1 ub2 p1 p2 x,
 x \incl ub1 ->
 plump ub1 p1 x -> plump ub2 p2 x.

Lemma plump_Acc : forall ub p x,
  plump ub p x -> x \incl ub -> Acc in_set x.

Definition isOrd x :=
  { p:Acc in_set x | plump x p x }.

Lemma isOrd_ext : forall x y, x == y -> isOrd x -> isOrd y.

Instance isOrd_morph : Proper (eq_set ==> iff) isOrd.

Qed.

Lemma isOrd_inv : forall x y,
  isOrd x -> lt y x -> isOrd y.

Lemma isOrd_plump : forall z, isOrd z ->
 forall x y, isOrd x -> x \incl y -> y \in z -> x \in z.

Lemma isOrd_intro : forall x,
  (forall a b, isOrd a -> a \incl b -> b \in x -> a \in x) ->
  (forall y, y \in x -> isOrd y) ->
  isOrd x.

Lemma isOrd_trans : forall x y z,
  isOrd x -> lt z y -> lt y x -> lt z x.

Lemma isOrd_ind : forall x (P:set->Prop),
  (forall y y', isOrd y -> y \incl x -> y == y' -> P y -> P y') ->
  (forall y, isOrd y ->
   y \incl x ->
   (forall z, lt z y -> P z) -> P y) ->
  isOrd x -> P x.

Lemma lt_antirefl : forall x, isOrd x -> ~ lt x x.

Lemma isOrd_zero : isOrd zero.

Definition osucc x := subset (power x) isOrd.

Instance osucc_morph : morph1 osucc.

Qed.

Lemma lt_osucc : forall x, isOrd x -> lt x (osucc x).

Hint Resolve isOrd_zero lt_osucc.

Lemma olts_le : forall x y, lt x (osucc y) -> x \incl y.

Lemma ole_lts : forall x y, isOrd x -> x \incl y -> lt x (osucc y).

Lemma le_lt_trans : forall x y z, isOrd z -> lt x (osucc y) -> lt y z -> lt x z.

Lemma isOrd_succ : forall n, isOrd n -> isOrd (osucc n).
Hint Resolve isOrd_succ.

Lemma lt_osucc_compat : forall n m, isOrd m -> lt n m -> lt (osucc n) (osucc m).

Lemma isOrd_eq : forall o, isOrd o -> o == sup o osucc.


Definition increasing F :=
  forall x y, isOrd x -> isOrd y -> y \incl x -> F y \incl F x.
Definition increasing_bounded o F :=
  forall x x', lt x' o -> lt x x' -> F x \incl F x'.

Definition succOrd o := exists2 o', isOrd o' & o == osucc o'.


Definition limitOrd o := isOrd o /\ (forall x, lt x o -> lt (osucc x) o).

Lemma limit_is_ord : forall o, limitOrd o -> isOrd o.
Hint Resolve limit_is_ord.

Lemma limit_union : forall o, limitOrd o -> union o == o.

Lemma limit_union_intro : forall o, isOrd o -> union o == o -> limitOrd o.

Lemma discr_lim_succ : forall o, limitOrd o -> succOrd o -> False.

Section OrdinalUpperBound.

  Variable I : set.
  Variable f : set -> set.
  Hypothesis f_ext : ext_fun I f.
  Hypothesis f_ord : forall x, x \in I -> isOrd (f x).

  Lemma isOrd_supf_intro : forall n, n \in I -> f n \incl sup I f.

  Lemma isOrd_supf_elim : forall x, lt x (sup I f) -> exists2 n, n \in I & lt x (f n).

  Lemma isOrd_supf : isOrd (sup I f).

End OrdinalUpperBound.


Definition toOrd (x : set) :=
  sup (subset x isOrd) osucc.

Instance toOrd_morph : morph1 toOrd.

Qed.

Lemma toOrd_isOrd : forall x, isOrd (toOrd x).

Lemma toOrd_ord : forall o, isOrd o -> toOrd o == o.

Section TransfiniteRecursion.

  Variable F : (set -> set) -> set -> set.
  Hypothesis Fmorph : forall o o' f f',
    o == o' -> eq_fun o f f' -> F f o == F f' o'.

  Definition TR_rel o y :=
    forall P,
    Proper (eq_set ==> eq_set ==> iff) P ->
    (forall o' f, ext_fun o' f ->
     (forall n, lt n o' -> P n (f n)) ->
     P o' (F f o')) ->
    P o y.

  Instance TR_rel_morph : Proper (eq_set ==> eq_set ==> iff) TR_rel.

Qed.

  Lemma TR_rel_intro : forall x f,
    ext_fun x f ->
    (forall y, y \in x -> TR_rel y (f y)) ->
    TR_rel x (F f x).

  Lemma TR_rel_inv : forall x y,
    TR_rel x y ->
    exists2 f,
      ext_fun x f /\ (forall y, y \in x -> TR_rel y (f y)) &
      y == F f x.

  Lemma TR_rel_fun :
    forall x y, TR_rel x y -> forall y', TR_rel x y' -> y == y'.

Require Import ZFrepl.

  Lemma TR_rel_repl_rel :
    forall x, repl_rel x TR_rel.

  Lemma TR_rel_def : forall o, isOrd o -> exists y, TR_rel o y.

  Lemma TR_rel_choice_pred : forall o, isOrd o ->
    uchoice_pred (fun y => TR_rel o y).

  Definition TR o := uchoice (fun y => TR_rel o y).

  Instance TR_morph : morph1 TR.
Qed.

  Lemma TR_eqn : forall o, isOrd o -> TR o == F TR o.

  Lemma TR_ind : forall o (P:set->set->Prop),
    (forall x x', isOrd x -> x \incl o -> x == x' ->
     forall y y', y == y' -> P x y -> P x' y') ->
    isOrd o ->
    (forall y, isOrd y -> y \incl o ->
     (forall x, lt x y -> P x (TR x)) ->
     P y (F TR y)) ->
    P o (TR o).

  Lemma TR_typ : forall n X,
    morph1 X ->
    isOrd n ->
    (forall y f, isOrd y -> y \incl n ->
     (forall z, lt z y -> f z \in X z) -> F f y \in X y) ->
    TR n \in X n.

End TransfiniteRecursion.

Section TransfiniteIteration.

  Variable F : set -> set.
  Hypothesis Fmorph : Proper (eq_set ==> eq_set) F.

Let G f o := sup o (fun o' => F (f o')).

Lemma Gmorph : forall o o' f f',
    o == o' -> eq_fun o f f' -> G f o == G f' o'.
Hint Resolve Gmorph.

  Definition TI := TR G.

  Instance TI_morph : morph1 TI.
Qed.

  Lemma TI_fun_ext : forall x, ext_fun x (fun y => F (TI y)).
Hint Resolve TI_fun_ext.

  Lemma TI_eq : forall o,
    isOrd o ->
    TI o == sup o (fun o' => F (TI o')).

  Lemma TI_intro : forall o o' x,
    isOrd o ->
    lt o' o ->
    x \in F (TI o') ->
    x \in TI o.

  Lemma TI_elim : forall o x,
    isOrd o ->
    x \in TI o ->
    exists2 o', lt o' o & x \in F (TI o').

  Lemma TI_initial : TI zero == empty.

  Lemma TI_typ : forall n X,
    (forall a, a \in X -> F a \in X) ->
    isOrd n ->
    (forall m G, isOrd m -> m \incl n ->
     ext_fun m G ->
     (forall x, lt x m -> G x \in X) -> sup m G \in X) ->
    TI n \in X.

End TransfiniteIteration.
Hint Resolve TI_fun_ext.


Require Import ZFrepl.

Section LimOrd.

  Variable f : nat -> set.
  Variable ford : forall n, isOrd (f n).

  Definition ord_sup :=
    union (repl N (fun x y => exists2 n, x == nat2set n & f n == y)).

  Lemma repl_sup :
    repl_rel N (fun x y => exists2 n, x == nat2set n & f n == y).

  Lemma isOrd_sup_intro : forall n, f n \incl ord_sup.

  Lemma isOrd_sup_elim : forall x, lt x ord_sup -> exists n, lt x (f n).

  Lemma isOrd_sup : isOrd ord_sup.

End LimOrd.

Section LimOrdRel.

  Variable R : nat -> set -> Prop.
  Variable Rmorph : forall n x x', isOrd x -> x == x' -> R n x -> R n x'.
  Variable Rtot : forall n, exists x, R n x.
  Variable Rfun : forall n x x',
    isOrd x -> isOrd x' -> R n x -> R n x' -> x == x'.
  Variable Rord : forall n x, R n x -> isOrd x.

  Definition sup_rel :=
    union (repl N (fun x y => exists2 n, x == nat2set n & R n y)).

  Lemma repl_sup_rel :
    repl_rel N (fun x y => exists2 n, x == nat2set n & R n y).

  Lemma isOrd_sup_rel_intro2 : forall n y, R n y -> y \incl sup_rel.

  Lemma isOrd_sup_rel_intro : forall n,
    exists2 y, R n y & y \incl sup_rel.

  Lemma isOrd_sup_rel_elim :
    forall x, lt x sup_rel -> exists n, exists2 y, R n y & lt x y.

  Lemma isOrd_sup_rel : isOrd sup_rel.

End LimOrdRel.

Fixpoint nat2ordset n :=
  match n with
  | 0 => zero
  | S k => osucc (nat2ordset k)
  end.

Lemma nat2ordset_typ : forall n, isOrd (nat2ordset n).
Hint Resolve nat2ordset_typ.


Definition omega := ord_sup nat2ordset.

Lemma isOrd_omega : isOrd omega.
Hint Resolve isOrd_omega.

Lemma zero_omega : lt zero omega.
Hint Resolve zero_omega.

Lemma osucc_omega : forall n, lt n omega -> lt (osucc n) omega.
Hint Resolve osucc_omega.

Lemma omega_limit_ord : limitOrd omega.
Hint Resolve omega_limit_ord.

Inductive ord : Set := OO | OS (o:ord) | OL (f:nat->ord).

Fixpoint ord2set (o:ord) : set :=
  match o with
  | OO => zero
  | OS k => osucc (ord2set k)
  | OL f => ord_sup (fun k => ord2set (f k))
  end.

Lemma ord2set_typ : forall o, isOrd (ord2set o).
Hint Resolve ord2set_typ.

Definition iter_w (f:set->set) o :=
  ord_sup(nat_rect(fun _=>set) o (fun _ => f)).

Lemma isOrd_iter_w : forall f o,
  (forall x, isOrd x -> isOrd (f x)) ->
  isOrd o ->
  isOrd (iter_w f o).

Definition plus_w := iter_w osucc.
Definition mult_w := iter_w plus_w.
Definition pow_w := iter_w mult_w.
Definition epsilon0 : set := iter_w pow_w omega.

Lemma isOrd_epsilon0: isOrd epsilon0.

Lemma zero_typ_e0 : zero \in epsilon0.