I am full professor in the Cosynus team of the proofs and algorithms pole at the LIX laboratory of École Polytechnique. I am also president of the CS department and head of the Cosynus team.
My research interests lie in the following topics: denotational semantics (game semantics in particular), concurrency, rewriting theory, category theory, linear logic, programming languages, algebraic topology, and hybrid systems. You are advised to have a look at my publications for details.
Before that, I used to work in the LIST laboratory at CEA and did a PhD thesis in the PPS team of Université Paris Diderot. You can have a look at my curriculum vitæ for more details.
You can reach me via
- mail: samuel.mimram@polytechnique.edu
- phone: +33 1 77 57 80 21
- postal mail:
École Polytechnique
Laboratoire d’informatique (LIX)
Bâtiment Alan Turing
1 rue Honoré d’Estienne d’Orves
CS35003 91120 Palaiseau Cedex, France - office number: 2162
My affiliation is LIX, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
Latest news
-
04 June 2024: organizing LHC days
-
05 February 2024: Louise Leclerc is starting an internship
-
17 July 2023: in the jury of Antoine Allioux PhD thesis
-
03 July 2023: participating to FSCD conference
-
12 June 2023: Camil Champin and Dylan Laird are starting an L3 internship
PhD students
-
2024–2027: Yorgo Chamoun
Ensembles précubiques et variétés différentiables -
2024–2027: Louise Leclerc
Une théorie homotopique des types dirigés -
2022–2025: Émile Oleon
Méthodes par réecriture en théorie des types homotopiques -
2022–2025: Elies Harington
Modèles polynomiaux de la logique linéaire dans les catégories supérieures -
2020–2023: Aly-Bora Ulusoy
A syntactic approach to the directed semantics of programs -
2017–2020: Cédric Ho Thanh
Opetopes: Syntactic and Algebraic Aspects -
2017–2020: Simon Forest
Computational descriptions of higher categories -
2017–2020: Thibaut Benjamin
A type theoretic approach to weak omega-categories and related higher structures -
2016–2019: Jérémy Ledent
Geometric Semantics for Asynchronous Computability