
Monoidal weak ω-categories

as models of a type theory

Thibaut Benjamin

Abstract

Weak ω-categories are notoriously difficult to define because of the very

intricate nature of their axioms. Various approaches have been explored,

based on different shapes given to the cells. Interestingly, homotopy type

theory encompasses a definition of weak ω-groupoid in a globular set-

ting, since every type carries such a structure. Starting from this remark,

Brunerie could extract this definition of globular weak ω-groupoids, formu-

lated as a type theory. By refining its rules, Finster and Mimram have then

defined a type theory called CaTT, whose models are weak ω-categories.

Here, we generalize this approach to monoidal weak ω-categories. Based

on the principle that they should be equivalent to weak ω-categories with

only one 0-cell, we are able to derive a type theory MCaTT whose models

are monoidal categories. This requires generalizing rules from contexts to

lists of contexts, in order to encode the information carried by the unique

0-cell. The correctness of the resulting type theory is shown by defining a

pair of translations between our type theory MCaTT and the type theory

CaTT. Our main contribution is to show that these translations relate the

models of our type theory to the models of the type theory CaTT consist-

ing of ω-categories with only one 0-cell, by analyzing in details how they

interact with the structural rules of both type theories.

1

Contents

1 Type theory for weak ω-categories 5

1.1 Type theoretical notations and conventions 5

1.2 Globular sets . 8

1.3 Pasting schemes and ps-contexts 10

1.4 The type theory CaTT . 13

2 Type theory for monoidal weak ω-category 16

2.1 Lists of contexts . 16

2.2 The type theory MCaTT . 21

2.3 Examples of derivations . 24

3 Correctness 26

3.1 Translation for pasting schemes 26

3.2 Translations for the structure in pasting schemes 34

3.3 Translations for the syntactic categories 46

3.4 Correctness . 55

4 Conclusion 58

2

Weak ω-categories are algebraic structures occurring naturally in modern

algebraic topology and type theory. They consist of collections of cells in every

dimension, which can be composed in various ways. The main difficulty in prop-

erly establishing a definition for those is due to the fact that the usual coherence

axioms imposed on composition, such as associativity, are here relaxed and only

supposed up to invertible higher cells, that we call witnesses for these axioms.

Moreover, these witnesses themselves admit compositions, which satisfy axioms

up to new witnesses, and so on, making the compositions and their coherence

axioms intricate. There have been different approaches to propose a definition of

weak ω-categories, which are summed up in a couple of surveys [15, 10]. These

approaches are based on various shapes, such as simplicial sets or opetopic sets.

In this article, we are interested in approaches based on globular sets. Examples

of such approaches can be found in the work of Batanin [5] and Leinster [16], re-

lying on the structure of globular operad. Independently Maltsioniotis proposed

an alternative approach [19], inspired by a definition of weak ω-groupoid (i.e.,

weak ω-categories whose all cells are invertible) proposed by Grothendieck [14],

and which is based on presheaves preserving some structure on a well-chosen

category. The two approaches have been proved equivalent by Ara [2].

Type theoretical approach. An important observation which came along

with the development of homotopy type theory [20] is the fact that the types in

Martin-Löf type theory, and in homotopy type theory carry a structure of weak

ω-groupoid, where the higher cells are given by identity types [17, 21, 1]. This

allowed Brunerie to extract a minimal set of rules from homotopy type theory

for generating the weak ω-categories [9], that he could prove to be equivalent

to the definition of Grothendieck. Recently, Finster and Mimram proposed

a generalization of Brunerie’s type theory to weak ω-categories [13], parallel to

the generalization Maltsiniotis proposed from Grothendieck definition. The type

theory they introduced is called CaTT, and has been proved to be equivalent to

the definition of Maltsiniotis [7].

3

Monoidal categories. In this article, we are interested in monoidal weak ω-

categories. These are categories equipped with a tensor product allowing new

ways to compose cells of every dimension. In particular, one cannot compose

the cells of dimension 0 in weak ω-categories, but one can compose them in

monoidal weak ω-categories. Moreover these new compositions are required to

satisfy axioms like associativity, but since it happens in a weak setup, these

axioms are again relaxed versions with witnesses in higher dimensions. This

can be seen as a categorification of the notion of monoid. Our goal here is to

provide a variant of the CaTT type theory in order to describe monidal weak

ω-categories.

As noticed by Baez and Dolan [4, 3], monoidal weak ω-categories should be

equivalent to weak ω-categories with only one 0-cell. In this correspondence,

there is a shift in dimension: the 0-cells of the monoidal ω-category are the 1-

cells of the ω-category with one 0-cell, and so on. The monoidal tensor product

becomes the composition of arrows of the ω-category, and all its coherences are

exactly those satisfied by these arrows in the ω-category.

Taking this correspondence as a starting point, we work out an explicit type

theory MCaTT whose models are monoidal categories, by describing CaTT with

the extra restriction that there should be only one 0-cells. This requires the

introduction of new kinds of contexts, which are supported by lists of lists,

along with types, terms and substitutions associated to those. We then define

a pair of translations back and forth between CaTT and MCaTT, and use the

interaction of these translations with the structure of the type theory to show

that our proposed definition satisfies the correspondence we started with.

Plan of the paper. In section 1, we introduce the type theory CaTT along

with the general tools we use to study type theory. Then in section 2 we define

the type theory MCaTT and give an informal justification of the rules. Section 3

is devoted to formally justifying our choice of rules for MCaTT by first defining

a pair of translations between CaTT and MCaTT, and then showing how these

4

translations lift to the models of these type theories to provide an equivalence

between the models of MCaTT and the models of CaTT that are categories with

only one 0-cell.

The author would like to thank Samuel Mimram for his valuable discussions

regarding the work presented in this article.

1 Type theory for weak ω-categories

Before working on monoidal weak ω-categories, we recall in this section the type

theory CaTT whose models are weak ω-categories. We refer the reader to [13, 7]

for a more detailed presentation of it. We begin by defining what we mean

here by a type theory, and construct, in this setting, a type theory describing

globular sets. Then, by adding extra rules, we show how to extend it in order

to obtain a type theory describing weak ω-categories.

1.1 Type theoretical notations and conventions

We first recall some basic definitions in type theory in order to establish the no-

tations, terminology and conventions that are used throughout this article. Note

that our method is to formulate a theory by defining a type theory, as opposed

to a developing structures internally to Martin-Löf type theory or homotopy

type theory.

Terms. A type theory manipulates various kind of objects, that we present

here along with the convention we use for naming them.

• variables, which are elements of a given infinite countable set of variables,

and that we denote x, y, z, . . .,

• terms, which are built out of variables and constructors that will be intro-

duced later on, they are denoted t, u, . . .,

• types, which are built out of terms and constructors that will be introduced

later on, they are denoted A,B, . . .,

5

• contexts, which are supported by lists of associations of the form x : A,

they are denoted Γ,∆, . . .,

• substitutions, which are supported by lists of terms, denoted σ, τ,

All of these notions come with an associated set of variables, that we denote

Var and that is the set of variables needed to build it out. Moreover, we also

denote Var(t : A) for the union of Var(t) and Var(A).

Judgments. There are four kinds of judgments that are commons to all of

our type theories, and that we refer to as structural judgments, they express the

well-definedness of the previously introduced objects:

Γ ` : Γ is a valid context

Γ ` A : A is a valid type in Γ

Γ ` t : A : t is a valid term of type A in Γ

Γ ` σ : ∆ : σ is a valid substitution from Γ to ∆

Structural rules. These judgments are always subject to the same structural

rules. The only difference between the various type theories that we introduce

is that they have different type constructors term constructors, with different

introduction rules. The structural rules that are common to all type theories

are the following

∅ `

Γ ` A

Γ, x : A `
(x /∈ Var(Γ))

Γ, x : A `

Γ, x : A ` x : A

Γ ` t : A

Γ, x : B ` t : A

Γ `

Γ ` 〈〉 : ∅

Γ ` σ : ∆ ∆ ` A Γ ` t : A[σ]

Γ ` 〈σ, t〉 : ∆, x : A

Note that we do not suppose any term or type constructors at first, because

we want to study different theories, and the constructors vary from one to the

6

other. In particular, our type theories do not support Σ-types, Π-types, nor any

construction of inductive types such as W -types or identity types.

We write A[σ] for the application of a substitution σ on the type A, and it

will be defined inductively later on, together with t[σ], which is the application

of σ on the term t, for each type and term constructor that we introduce. These

definitions always make the following rules admissible

Γ ` σ : ∆ ∆ ` A

Γ ` A[σ]

Γ ` σ : ∆ ∆ ` t : A

Γ ` t[σ] : A[σ]

These actions also define a composition of substitutions given inductively by

〈〉 ◦ τ = 〈〉 〈σ, t〉 ◦ τ = 〈σ ◦ τ, t[τ]〉

It is always be possible to check by induction that the action of substitutions is

compatible with the composition, and thus making the composition associative

t[σ][τ] = t[σ ◦ τ]

σ ◦ (τ ◦ δ) = (σ ◦ τ) ◦ δ

Since there is also always an identity substitution, this shows that for a type the-

ory T, one can construct a syntactic category ST associated to T, whose objects

are the contexts of the type theory, and whose morphisms are the substitutions.

Category with families. We use the formalism of categories with families as

our categorical axiomatization of the models of such a theory, and we refer to [11]

for a detailed presentation of those. Intuitively, they correspond to a categorical

reformulation of the structural rules we just introduced. In particular, the

syntactic category can be equipped with a structure of category with families,

given by the sets of types and terms of the theory. We do not introduce fully this

concept, since we only work on a syntactical level: we define translations between

7

type theories, which act simultaneously on contexts, substitutions, types and

terms. Such a translation induces a functor on the syntactic categories, and

the only characterization we need is that this functor defines a morphism of

category with families when the translation preserves all the structure we have

introduced so far (i.e., the structural judgments, the structural rules and the

applications of substitutions).

Models of a type theory. The category Set comes equipped with a struc-

ture of (large) category with families: technically, one should in fact consider a

category with proper classes of types and terms associated to be the structure

associated to Set, but we ignore this size issue in this article. The category

of models of the type theory T is defined to be the category of morphisms of

category with families from ST to Set, and is denoted Mod (ST).

1.2 Globular sets

We study globular weak ω-categories, that is weak ω-categories whose under-

lying structure is a globular set, and hence we first define a type theory whose

models are globular sets, following [13]. The category of globes G is the category

generated by

[0] [1] [2] · · ·
s

t

s

t

s

t

with the relations ts = ss and st = tt. The category of globular sets GSet is the

category of presehaves over G. It comes equipped with the Yoneda embedding

Y : G → GSet. A globular set which is in the image of this functor is called

representable or a disk and we denote it Dn = Y([n]). Every globular set is a

colimit of representables in a canonical way [18].

Type theory for globular sets. In order to manipulate globular sets, we

introduce two type constructors ?,which is the type of the 0-cells, and→, which

constructs the types of higher cells between two given cells. These constructors

8

are subject to the following introduction rules

Γ `

Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

In the other type theories, we study structures that are supported by a globular

sets, thus we keep the same type constructors, the extra structure being added

via new term constructors. For now there are no term constructors, so the only

terms in this theory are variables, we call this theory G.

Syntactic category and models of G. Here, we present basic results about

the theory G without proofs, but by illustrating them with examples; a detailed

presentation can be found in [7].

Proposition 1. The syntactic category of the theory G is equivalent to the

opposite of the category of finite globular sets.

Example 2. To understand this correspondance, one can simply read a globular

set on a context, and conversely. For instance, the context on the left below

corresponds to the globular set depicted on the right:

x : ?, y : ?, z : ?

f1 : x→ y, f2 : x→ y, g : x→ z, h : y → y

α : f1 → f2

x y

z

f1

f2

⇓α

h

g

Proposition 3. The category of models of G is equivalent to the category of

globular sets.

Note that it respects the usual correspondence where the theory is the opposite

of the finitely generated objects, and it inludes in its models via a Yoneda

embedding.

9

Disk contexts. Note that the category of finite globular sets contains in par-

ticular the representable objects Dn, thus the equivalence provides correspond-

ing objects in the syntactic category, that we again denote Dn and that we call

disk contexts. In low dimensions, these contexts are given (up to renaming of

their variables), by

D0 : (x : ?)

D1 : (x : ?, y : ?, f : x −→
?
y)

D2 : (x : ?, y : ?, f : x −→
?
y, g : x −→

?
y, α : f −−−→

x−→
?
y

g)

1.3 Pasting schemes and ps-contexts

In order to indtroduce new terms in our type theory, we need special kind of

contexts, that we describe using the correspondence with finite globular sets.

Globular sums. In the category of globular sets, we call a globular sum a

colimit of the form

Di0 Di1 Dik−1 Dik

Dj1 · · · Djk−1

Where all the arrows pointing to the right are iterated sources and all the arrows

pointing to the left are iterated targets. The pasting schemes are the globular

sets that are obtained as a globular sum, note that they necessarily are finite.

Combinatorial description. We represent the combinatorial data provided

by a pasting scheme with a diagram of the following form, where we determine

10

the corresponding globular sum by reading the heights of the peaks.

0

1

2

3 D3 D2 D1

D1 D0

These two representation are both description of the pasting scheme which, as

a globular set, is the following

• • •
⇓V⇓

⇓

More formally, this combinatorial data can be encoded as non-decreasing park-

ing functions, that is non-decreasing functions f : {0, · · · , n} → {0, · · · , n} such

that f(0) = 0 and f(n) = n, where we plot the function f(n)−n. There are var-

ious other combinatorial descriptions of pasting schemes, like Batanin trees [5],

or Dyck words.

Ps-contexts. We define ps-contexts to be the contexts of the type theory G

which correspond to pasting schemes. Those can be characterized by a simple

algorithm, which can be itself described using rules of a type-theoretical flavor:

a ps-context Γ is precisely a context such that the judgment Γ `ps described

below is derivable. We thus introduce two new forms of judgments

Γ `ps : the context Γ is a ps-context

Γ `ps x : A : Γ is a partial ps-context with dangling variable x

11

The second judgment should be understood as an auxiliary function. These two

judgments are subject to the follwing rules

(x : ?) `ps x : ?

(pss)
Γ `ps f : x −→

A
y

Γ `ps y : A

(psd)

Γ `ps x : A

Γ, y : A, f : x −→
A
y `ps f : x −→

A
y

(pse)
Γ `ps x : ?

Γ `ps

(ps)

Source and target. Given an integer i ∈ N, a ps-context Γ comes equipped

with an i-source ∂−i Γ, defined inductively on the structure by ∂−i (x : ?) = (x : ?)

and

∂−i (Γ, y : A, f : x→ y) =

 ∂−i Γ if dimA ≥ i

∂−i Γ, y : A, f : x→ y otherwise

Similarly, a ps-context Γ also has an i-target ∂+
i Γ, defined inductively on its

structure by ∂+
i (x : ?) = (x : ?) and

∂+
i (Γ, y : A, f : x→ y) =


∂+
i Γ if dimA > i

drop(∂+
i Γ), y : A if dimA = i

∂+
i Γ, y : A, f : x→ y otherwise

where drop(Γ) is the context Γ with its last variable removed, i.e.,

drop(Γ, x : A) = Γ

Moreover, we write

∂−Γ = ∂−dim Γ−1 ∂+Γ = ∂+
dim Γ−1

Note that with these conventions, ∂−(x : ?) and ∂+(x : ?) are not defined.

12

1.4 The type theory CaTT

In order to axiomatize the weak ω-category structure, we add new terms, that

we call coherences. This is done in our theory by adding a term constructor

coh, together with introducion rules. The work we have done so far with ps-

contexts shows relevance here, since those index the introduction of coherences,

dually to how pasting schemes index the operations in other definitions of weak

ω-categories [5, 16, 19].

Side conditions. The introduction rules for the term constructor coh have to

verify some side conditions regarding the variables that are used in the type that

we derive. There are two such rules, intuitively one of them creates witnesses

for operations, for instance the composition, or whiskering, which a priori have

no reason to be invertible, whereas the other creates witnesses for equalities,

as for instance the associators, which are always weakly invertible. In order

to simplify the notations, we encompass the requirements for these rules along

with their side conditions in new judgments

Γ `op A : The type A defines an admissible operation in Γ

Γ `eq A : The type A defines an admissible equality in Γ

These two judgments are subject to the following derivation rules, which express

all the requirements for the introduction rules of the constructor coh

Γ `ps ∂−(Γ) ` t : A ∂+(Γ) ` u : A

Γ `op t −→
A
u

 Var(t : A) = Var(∂−(Γ))

Var(u : A) = Var(∂+(Γ))

Γ `ps Γ ` A

Γ `eq A

Var(A) = Var(Γ)

13

Coherences. We can now give the introduction rules for the new term con-

structor coh.

Γ `op A ∆ ` σ : Γ

∆ ` cohΓ,A(σ) : A[σ]

Γ `eq A ∆ ` σ : Γ

∆ ` cohΓ,A(σ) : A[σ]

The resulting type theory obtained by adding these rules is called CaTT.

Examples. We give a few examples of derivations in this system illustrating

how it describes weak ω-categories. This shows the introduction of new coher-

ences and emphasizes the role of the substitutions taken as arguments of these

coherences.

• Composition: In CaTT one can use a coherence to derive a witness for

composition of 1-cells. Start by considering the context

Γcomp = (x : ?, y : ?, f : x→ y, z : ?, g : y → z)

One can check that Γcomp `ps, and compute its source ∂−(Γcomp) = (x : ?)

and target ∂+(Γcomp) = (z : ?). Thus, the judgment Γcomp `op x → z is

derivable. Now considering any context Γ in CaTT, with two terms v, w,

such that Γ ` v : u→ u′ and Γ ` w : u′ → u′′ (i.e., two composable 1-cells

u and v), there is a substitution σ = 〈u, u′, v, u′′, w〉 defined by this data,

such that

Γ ` σ : Γcomp

So the introduction rule for coherences applies and builds a witness of the

composition of v and w

Γ ` cohΓcomp,x→z
(σ) : u→ u′′

14

We denote this term with the simpler and more usual notation

Γ ` comp v w : u→ u′′

• Associativity: Similarly, one can pose the context

Γassoc = (x : ?, y : ?, f : x→ y, z : ?, g : y → z, w : ?, h : z → w)

and one can check Γassoc `ps, and

Γassoc `eq comp (comp f g) h→ comp f (comp g h)

Whenever a context Γ defines three terms u, v, w that are composable 1-

cells, this provides a witness for the associativity of their compositions,

denoted

Γ ` assoc u v w : comp (comp u v) w → comp u (comp v w)

Models. The models of of the type theory CaTT have been studied in details

in [7] and it is not the purpose of this article to study them in depth. However,

we rely on them as our definition of weak ω-categories. This is justified by

the following theorem, which we do not prove here, establishing the equivalence

between the models of CaTT and the definition of weak ω-categories proposed

by Maltsiniotis [19]:

Theorem 4. The category Mod (SCaTT) of models of the type theory CaTT is

equivalent to the category of weak ω-categories.

In this article, for all intents and purposes, weak ω-categories are defined as

models of the type theory CaTT, so from now on, the category of weak ω-cate-

gories is denoted Mod (SCaTT).

15

Syntactic category. Note that the syntactic category SCaTT can be concieved

as the opposite category of the full subcategory of Mod (SCaTT) whose objects

are freely finitely generated.

2 Type theory for monoidal weak ω-category

We now focus on monoidal categories. The idea here is to adapt the type theory

for weak ω-categories, in order to enforce the constraint that our categories

should always have exactly one 0-cell. To this end, we simulate the existence

of “a virtual object of dimension −1” in our monoidal categories. There is no

formal way in the theory for considering this object, but all the rules act as if

it existed.

The category of monoidal weak ω-categories. Given a weak ω-category F

in Mod (SCaTT), we call its set of 0-cells the image of the 0-th dimensional disk

F (D0). We thus denote Mod• (SCaTT) the full subcategory of Mod (SCaTT)

whose objects are exactly the models F of CaTT, such that F (D0) = {•}.

2.1 Lists of contexts

In the theory CaTT, the introduction rules for coherences relies on the structure

of ps-contexts. In the case of monoidal categories, we have to adapt this struc-

ture, to what we call a monoidal ps-context. Such a context is defined as a list of

ps-contexts, the intuition being that it is combinatorially equivalent to a single

ps-context, but with a shift of dimension. Let us illustrate this correspondence

with an example: Considering the following ps-context,

16

we shift its dimension by −1

and remove the (−1)-cells in order to finally obtain the following list of ps-

contexts

Conversely, given a monoidal ps-context, there is a unique way to assemble

together all the elements of the list to produce a ps-context. This is the intuition

behind the type theory we introduce for monoidal categories, and this intuition

will be made formal via a pair of translations between this theory and CaTT

in Section 3. Note that monoidal ps-contexts simulate many virtual objects of

dimensions −1, and not a single one, this will be corrected later on, by only

considering judgments in a regular context.

Notations. For manipulating the lists, we always use overlined characters to

denote lists of the same type than the character, [] to denote the empty list, and

[a, b] to denote the list whose tail is a and whose head is b. Moreover, given two

lists a and b, we denote a@b their concatenation. Finally, for a list a, we denote

`(a) its length.

Monoidal ps-contexts. We introduce a new judgment to express the fact

that a data is a monoidal ps-context.

Γ `ps : Γ is a well-formed monoidal ps-context

17

The derivation rule for this judgment expresses that monoidal ps-contexts are

nothing more that a list of ps-contexts, with non clashing variable names

[] `ps

Γ `ps ∆ `ps[
Γ; ∆

]
`ps

(
Var(∆) ∩Var(Γ) = ∅

)

The monoidal ps-contexts come equipped with a notions of i-source, by applying

successively the i-source of ps-contexts to all its elements.

∂−i ([]) = [] ∂−i (
[
Γ; Γ′

]
) =

[
∂−i Γ; ∂−i Γ′

]
This lets us define the general notion of source for monoidal ps-contexts, which

are useful for defining the introduction rules for coherences

∂−Γ = ∂−
dim Γ−1

Γ

Note that in the case of a monoidal ps-context of dimension 0, (i.e., a list of ps-

contexts all isomorphic to D0), this definition does not make sense and we then

use the convention that ∂−Γ = []. In general the case of the monoidal ps-context

of dimension 0 is a limit case, and it will appear in various places. Similarly,

monoidal ps-contexts come equipped with a notion of target ∂+Γ, defined the

same way as the source from the corresponding notion on ps-contexts. The

following lemma is immediate by definition of the source and the target,

Lemma 5. Any monoidal ps-context Γ of dimension non 0 has the same length

than its source and its target `(Γ) = `(∂−(Γ)) = `(∂+(Γ)).

Judgments for monoidal ps-contexts. Unlike the theory CaTT, in this

theory the monoidal ps-contexts are not particular contexts (they are lists of

contexts) and therefore we have to define a dedicated notion of type, term

and substitution in a ps-context. For this reason, we introduce new dedicated

18

judgments:

Γ ` A : A is a valid type in Γ

Γ ` t : A : t is a valid term of type A in Γ

Γ ` σ : ∆ : σ is a valid substitution from Γ to ∆

Γ ` σ : ∆ : The list σ is a valid substitution from Γ to ∆

Note that even if the notation are similar, these judgments are specific to the case

where the left hand side is a monoidal ps-contexts and should not be confused

with the regular judgments of our type theory. In particular, they are subject

to the following derivation rules, which provide a guarantee regarding the order

in which the ps-contexts of the list Γ are used.

Γ ` ?

Γ ` t : A Γ ` u : A

Γ ` t −→
A
u

Γ `ps Γ′ ` t : A

[Γ; Γ′] ` t : A

Γ ` t : A Γ′ `ps[
Γ; Γ′

]
` t : A

Γ `ps

Γ ` 〈〉 : ∅

Γ ` σ : ∆ ∆ ` A Γ ` t : A[σ]

Γ ` 〈σ, t〉 : ∆, x : A

[] ` [] : []

Γ ` σ : ∆ Γ
′ ` σ′ : ∆′ ∆′ `ps

Γ@Γ
′ ` [σ;σ′] :

[
∆; ∆′

]
Imagining that the 0-cells we are describing are in fact arrows over objects

of dimension −1, they come with an order and all derivable terms, types and

substitutions should respect this order. The rules we just introduce are designed

to enforce this order condition while still never mentionning any dimension −1.

Categorical structure. There is a compoisition for substitutions between

two monoidal ps-context, as well as composition of such a substitution with a

19

substitution from a monoidal ps-context to a regular context. These are defined

mutually inductively as follows.

〈〉 ◦ σ = 〈〉 〈τ, t〉 ◦ σ = 〈τ ◦ σ, t[σ]〉

[] ◦ σ = [] [τ , τ ′] ◦ σ = [τ ◦ σ; τ ′ ◦ σ]

Moreover, we also define the identity substitution between on monoidal ps-

context and itselft as the list constituted of only identity substitutions. The

composition previously defined is associative and has the identity as left and

right neutral element, this makes the monoidal ps-contexts into a category,

whith morphisms being the monoidal substitutions.

Side conditions. Like in CaTT, in order to derive coherences, we need to

check side conditions, and like in that case we encompass them into new judg-

ments.

Γ `op A : The type A defines an admissible operation in Γ

Γ `eq A : The type A defines an admissible equality in Γ

These judgments are very similar to those of the theory CaTT except that

they use our newly introduced judgments for monoidal ps-contexts as premises,

instead of regular judgments of the theory. Besides, we have to treat separately

the case of the type ?, which has to be made into an admissible operation, in

order to describe the monoidal product

[
D0
]
`op ?

Γ `op ?[
Γ;D0

]
`op ?

Γ `ps ∂−(Γ) ` t : A ∂+(Γ) ` u : A

Γ `op t −→
A
u

 Var(t : A) = Var(∂−(Γ))

Var(u : A) = Var(∂+(Γ))

20

Γ `ps Γ ` A

Γ `eq A

Var(A) = Var(Γ)

Coherences. We now introduce a term constructor coh, whose arguments are

a monoidal ps-context, a type and a substitution between moniodal ps-contexts.

We denote the term coh∆,A[σ]. The introduction rules for such terms are the

two following ones

∆ `op A Γ ` σ : ∆

Γ ` coh∆,A(σ) : A[σ]

∆ `eq A Γ ` σ : ∆

Γ ` coh∆,A(σ) : A[σ]

Where the notation A[σ] (resp. t[σ]) is the application of the monoidal substiu-

tion σ to the type A (resp. to the term t), defined by induction a follows

?[σ] ≡ ?

t −→
A
u[σ] ≡ t[σ] −−−→

A[σ]
u[σ]

cohΓ,A(γ)[σ] ≡ cohΓ,A(γ ◦ σ)

Note that with these definitions for coherences and for applying monoidal sub-

stitutions, the following rules are admissible. These rule express a compatibility

between application of the substitution and the typing rules.

Γ `ps Γ ` A ∆ ` σ : Γ

∆ ` A[σ]

Γ `ps Γ ` t : A ∆ ` σ : Γ

∆ ` t[σ] : A[σ]

2.2 The type theory MCaTT

Up until now, the system that we have presented is incomplete, as it only adds

judgments whose left hand side is a monoidal ps-contexts. Those judgments

are not part of the structure of type theory, hence they do not change the

models. Moreover, we had announced that we want to simulate a single object

in dimension −1, and we presented a system that simulates many of them.

In order to fix this, we present a way to derive regular judgments from these

new judgments we have introduced. This requires the use of a new kind of

21

substitution going from a regular context to a monoidal ps-context, and which

plays two roles. Firstly it allows for judgments in a monoidal ps-context to

generate judgments in regular contexts, which has an effect on the models of

the theory, and secondly it ensures that all the virtual objects of dimension −1

that were simulated in monoidal ps-contexts get (virtually) sent onto a unique

virtual object of dimension −1 simulated in a regular context.

Substitutions to a monoidal ps-context. In order to build a bridge be-

tween the world of monoidal ps-context and our type theory, and transfer our

newly introduced terms built out of coherences to a regular context, we need

to introduce a new sort of substitution, that goes from a regular context to

a monoidal ps-context. These substitution are characterized by the following

judgment:

∆ ` σ : Γ : σ is a well-formed substitution from ∆ to Γ

As the notation suggests, these substitutions are supported by lists of susbtitu-

tions, and the derivation rules to which they are subject are the following

∆ `

∆ ` [] : []

∆ ` σ : Γ ∆ ` σ′ : Γ′

∆ ` [σ;σ′] :
[
Γ; Γ′

]
Note that such subsitution compose on the right with the usual subsitutions,

and on the left with the substitutions from a monoidal ps-context. These com-

positions are associative and given by the following formulas

[] ◦ γ ≡ [] [σ;σ′] ◦ γ ≡ [σ ◦ γ;σ′ ◦ γ]

〈〉 ◦ σ ≡ 〈〉 〈γ, t〉 ◦ σ ≡ 〈γ ◦ σ, t[σ]〉

[] ◦ σ ≡ [] [γ; γ′] ◦ σ ≡ [γ ◦ σ; γ′ ◦ σ]

22

By orienting these relations left to right, it provides a confluent rewriting system

for such substitutions, which gives an algorithm deciding whether two such

substitutions are equal or not.

Defining terms in general contexts. We now use this new kind of sub-

stitutions to define terms and types in regular contexts from terms and types

derived in monoidal ps-contexts. This is achieved by two new type constructors

t[σ] and A[σ], along with the following introduction rules

Γ `ps Γ ` A ∆ ` σ : Γ

∆ ` A[σ]

Γ `ps Γ ` t : A ∆ ` σ : Γ

∆ ` t[σ] : A[σ]

This introduces too many terms that representing the same operation, so in

order to reduce the number of derivable terms to the minimum, we need to

quotient by some relations, expressing the compatibility of type formers and

term formers with the substitution operations.

?[σ] ≡ ?

t −→
A
u[σ] ≡ t[σ] −−−→

A[σ]
u[σ]

cohΓ,A(σ)[γ] ≡ cohΓ,A(σ ◦ γ)

cohΓ,A(γ)[σ] ≡ cohΓ,A(γ ◦ σ)

By orienting these relations left to right as they are written, they define a

confluent rewriting system, thus providing with an algorithm for type checking.

Coherences. The above rewriting rules give normal forms for terms which

are not variables, of the form

∆ ` cohΓ,A(σ) : A[σ]

for a substitution σ going from a context to a monoidal ps-context. In order

to simplify our syntax, we introduce coherences, that are terms of the form

23

(implicitly taking as argument an identity substitution)

Γ ` cohΓ,A : A

Then our rewriting system shows that all terms are obtained by applying a

substitution to such a coherence.

2.3 Examples of derivations

Here are few examples and counter-exmaple of derivable terms in MCaTT, to

illustrate how they describe monoidal weak ω-categories.

• Monoidal product: we can define the monoidal tensor product in MCaTT

as the coherence

prod := coh[(x:?);(y:?)],?

By composing with a substitution, for every objects t and u (of type ?) in

a given context Γ, we can form their tensor product as

Γ ` prod t u : ?

• Associativity of monoidal product: similarly, we can define the valid co-

herence

assoc := coh[(x:?);(y:?);(z:?)],prod x (prod y z)→prod (prod x y) z

Using this coherence, for every object t, u and v (of type ?) in a given

context Γ, we can form a witness of associativity

Γ ` assoc t u v : prod t (prod u v) −→
?
prod (prod t u) v

• Neutral element: it is also possible to derive the neutral element for the

monoidal product, which can be viewed as a nullary monoidal product. It

24

is defined as a coherence

e := coh[],?

In any context, one compose with the empty substitution, in order to get

the term witnessing the neutral element.

Γ ` e [] : ?

In order to simplify the notations, we may simply denote e in any context,

and omit the empty substitutions [] which carries no information.

• Cancellation witness: one can also prove in MCaTT that the term e is

indeed a neutral element for the monoidal product, here for instance on

the left. This is done by the coherence

l-unit := coh[(x:?)],(prod e x)→x

This coherence can be used to derive, for eny object u in a context Γ, the

following witness of left unitality of e

Γ ` l-unit u : (prod e u)→ u

• Functoriality of monoidal product: The following coherence defines the

functoirality for monoidal product

funl := coh[(x:?,y:?,f :x→y);(z:?)],(prod x z)→(prod y z)

Given any three objects u, u′, v together with a term t of type u → u′

in a context Γ, this coherence can be used to derive a witness for the

fonctoriality of the monoidal tensor product on the left

Γ ` funl t v : (prod u v)→ (prod u′ v)

25

• Symmetry of the monoidal product: note that the same idea does not

apply to derive the symmetry of the monoidal product. Indeed, if we try

to build a witness for symmetry, it would be a term

sym := coh[(x:?);(y:?)],prod x y→prod y x

It turns out that the list [(x : ?); (y : ?)] ` [〈y〉; 〈x〉] : [(x : ?); (y : ?)] is not

a valid substitution, which makes the judgment [(x : ?); (y; ?)] ` prod y x

not derivable. So the term sym is not derivable in MCaTT. This is a safety

check, since the internal language for monoidal categories is supposed to

be unable to derive a witness for commutativity.

3 Correctness

We now prove that MCaTT is the internal language for monoidal weak ω-cate-

gories. Our strategy relies on the fact that CaTT is the internal language for

weak ω-categories, establishes a translation between MCaTT and a restriction

of the theory CaTT such that all contexts contain exactly 0-cell. This is made

formal by constructing a pair of functors from the syntactic category of MCaTT

to a subcategory of the syntactic category of CaTT. Although these translations

require some care in order to ensure that they are properly defined, they merely

formalize our initial intuition behind MCaTT and most of the proofs are techni-

cal but simple mutual inductions on the structure of the type theory. Our main

contribution is to show how these translations give the expected equivalence, by

analyzing their interaction with the structure of category with families of the

syntactic categories on each side.

3.1 Translation for pasting schemes

We now define the operation that formalizes the combinatorial equivalence be-

tween monoidal ps-contexts and ps-contexts shifted in dimension.

26

Flattening of monoidal ps-contexts. Intuitively, given a monoidal ps-

context Γ the operation we define generates a ps-context, by connecting all

the components of Γ through a new variable. Later on, the full translation will

identify all the newly introduced variables to end up in a context with only one

object. In order to perform this translation, we need first to pick an inifnite

sequence of fresh variable names x0, x1, . . . to be used (which can always be

done since proofs are finite and the set of variables is supposed to be infinite

countable). We then define the operation of flattening by mutual induction on

monoidal ps-contexts and types containing only variables:

[]
[

= (x0 : ?)[
Γ;∅

][
= (Γ

[
, xk+1 : ?)

[
Γ; (∆, y : A)

][
=
([

Γ; ∆
][
, y : Σk,k+1A

)

for contexts, with k = `(Γ), and for types

Σn,m (?) = xn −→
?
xm Σn,m

(
x −→

A
y
)

= x −−−−→
Σn,mA

y

In order to prove that this operation respects ps-contexts, we show

Lemma 6. The two following statements are verified

(1) if Γ `ps then Γ
[`ps x`(Γ) : ?

(2) if Γ `ps and ∆ `ps y : A then
[
Γ; ∆

][`ps y : Σ`(Γ),`(Γ)+1A

Proof. These two statements are proved by mutual induction on monoidal ps-

contexts and types containing only variables.

(1) We prove this statement by induction over the list structure of monoidal

ps-contexts.

• First note that for the monoidal ps-context [], we have []
[

= (x0 : ?)

which satisfies indeed(x0 : ?) `ps x0 : ?.

27

• Suppose that a monoidal ps-context is of the form
[
Γ; ∆

]
. Then

necessarily, this implies Γ `ps and ∆ `ps, and thus there is a judg-

ment of the form ∆ `ps y : ?. By induction, this implies that[
Γ; ∆

][`ps x`(Γ) −→? x`(Γ)+1. By the rule (psd), this proves the deriv-

ability of
[
Γ; ∆

][`ps x`(Γ)+1 : ?.

(2) Fix a monoidal ps-context Γ and denote k its length, we prove this state-

ment by induction over the structure of ps-context.

• For a ps-context of the form (y : ?) `ps y : ?, we have that

[
Γ; (y : ?)

][
= (Γ, xk+1 : ?, y : xk −→

?
xk+1)

and since by induction we have that Γ
[`ps xk : ?, this proves by

application of the rule (pse) that

[
Γ; (y : ?)

][`ps y : Σk,k+1 (?)

• For a ps-context of the form (∆, z : A, f : y −→
A

z) `ps z : y −→
A

z

assuming that we have ∆ ` y : A, we have that

[
Γ; (∆, z : A, f : y −→

A
z)
][

=

([
Γ; ∆

][
, z : Σk,k+1A, f : y −−−−−→

Σk,k+1A
z

)

and since by induction, we have
[
Γ; ∆

][`ps y : Σk,k+1A, it follows

by application of the rule (pse) that

[
Γ; (∆, z : A, f : y −→

A
z)
][
`ps f : Σk,k+1

(
y −→

A
z
)

• For a ps-context of the form ∆ `ps z : A, assuming that we have

∆ `ps f : y −→
A
z, by induction we have that

[
Γ; ∆

][`ps f : y −−−−−→
Σk,k+1A

z

28

and thus by application of the rule (psd), this proves that

[
Γ; ∆

][`ps z : Σk,k+1A

Proposition 7. The falttening operation sends monoidal ps-contexts in MCaTT

onto ps-contexts in CaTT: Γ `ps implies Γ
[`ps.

Proof. By the previous lemma, if we have Γ `ps, then we also have Γ
[`ps x`(Γ) : ?.

So, by application of the rule (ps), this proves that Γ
[`ps.

Folding of a ps-context. We now define the operation that goes the opposite

way: Given a ps-context in CaTT, we shift its dimension by −1, and remove all

objects of dimension −1 to define a monoidal ps-context. In order to properly

define this operation we introduce the notation

(Γ, (x : A)) is the list Γ with its last context extended with (x : A)

We call this operation folding, and denote it with _]. It is defined on contexts

as follows

∅ = [] (Γ, x : ?) =
[
Γ];∅

]
(Γ, x : A) = (Γ], x : A−)(

x −→
?
y
)−

= ?
(
x −→

A
y
)−

= x −−→
A−

y

Note that there is no case for the type ?, and this is intentional since it becomes

in MCaTT the virtual object, that should never be referred to. This lack of

translation for the type ? is very important and manifests itslef throughout our

comparison between the two theories.

Proposition 8. The folding operation sends ps-contexts onto monoidal ps con-

texts. More precisely, we have the two following statements

(1) If Γ `ps x : A with A distinct from ?, then necessarily Γ] is of the form[
Γ; ∆

]
, with Γ `ps and ∆ `ps x : A−.

29

(2) If Γ `ps then Γ] `ps.

Proof. We prove these two statements by induction. The second one is a con-

sequence of the first one and one of the induction cases of the first one uses the

second one.

(1) We prove this result by induction on the structure of ps-context.

• Here we prevent the type A to be ?, so the base case is actually the

case of the context of a derivation of the form

(Γ, y : ?, f : x −→
?
y) `ps f : x −→

?
y

assuming that Γ `ps x : ?. Then by the rule (ps), we also have

Γ `ps, and thus by induction Γ] `ps. Moreover, we also have that

(f : ?) `ps f : ?, hence the expected result

(Γ, y : ?, f : x −→
?
y)] =

[
Γ]; (f : ?)

]
with

 Γ `ps

f : ? `ps f : ?

• In the case of a derivation of the form

(Γ, y : A, f : x −→
A
y) `ps f : x −→

A
y

assuming Γ `ps x : A and A distinct from ?, we have by induction

that Γ] is of the form
[
Γ; ∆

]
with Γ `ps and ∆ `ps x : A−. By

application of the rule (pse) for ∆, we have that

(∆, y : A−, f : x −−→
A−

y) `ps f : x −−→
A−

y

30

This proves that

(Γ, y : A, f : x −→
A
y)] =

[
Γ; (∆, y : A−, f : x −−→

A−
y)

]

with


Γ `ps

(∆, y : A−, f : x −−→
A−

y) `ps f : x −−→
A−

y

• In the case of a derivation of the form Γ `ps y : A, assuming

Γ `ps f : x −→
A
y with A distinct of the type ?, we have by induction

that Γ] is of the form
[
Γ,∆

]
with Γ `ps and ∆ `ps f : x −−→

A−
y. By

applying the rule (psd) to ∆, this proves that ∆ `ps y : A−, and thus

Γ] =
[
Γ; ∆

]
with

 Γ `ps

∆ `ps y : A−

(2) First note that if Γ is the ps-context obtained by a unique point: Γ = (x : ?),

then we have Γ] = [], and hence Γ] `ps. So it suffices to check this prop-

erty for a ps-context Γ which is not just one point. For such a ps-context

the judgment Γ `ps necessarily comes from a judgment Γ `ps y : ?, which

in turns has to come from a judgment of the form Γ `ps f : y −→
?
z. By

the previous lemma, this proves that Γ] is of the form
[
Γ; ∆

]
, with Γ `ps

and ∆ `ps f :
(
y −→

?
z
)−

= ?. By application of the rule (ps) on ∆, this

proves that ∆ `ps, and thus

Γ] =
[
Γ; ∆

]
`ps

Note that in fact only the second statement is of interest for us, the first one

should be seen as a auxialiary lemma that is mutually inductive with it and

allows for a proof.

Interaction of flattening and folding. As the notations suggest, the flat-

tening and folding operations are inverse to one another. Although this is not

31

true on the nose in one of the directions, due to the fact that the flattening in-

troduces fresh variables, it is holds up to renaming of those variables. In order

to prove this, we first prove the following lemma concerning the action on types

with only variables.

Lemma 9. The transformations that we have introduced on types cancel each

other.

(1) For any type A with only variables, we have that (ΣA)
−

= A

(2) For any type A with only variables and distinct from the the type ?,

Σ (A−) = A up to renaming of the variables of type ?

Proof. These statements are both proved by induction on the structure of the

types

(1) For the type ?, we have that

(Σ?)
−

=
(
xn −→

?
xm

)−
= ?

And for a type of the form x −→
A
y, we have that

(
Σ
(
x −→

A
y
))−

= x −−−−→
(ΣA)−

y

By induction this proves the equality.

(2) For a type of the form x −→
?
y, we have that

Σ

((
x −→

?
y
)−)

= Σ? = xn −→
?
xm

And for a type of the form x −→
A
y, we have that

Σ
((
x −→

A
y
))−

= x −−−−−→
Σ(A−)

y

32

By induction this proves the equality up to renaming of the variables of

type ?.

Proposition 10. The flattening and folding operations are inverse to one an-

other

(1) If Γ `ps, then
(

Γ
[
)]

= Γ

(2) If Γ `ps, then
(
Γ]
)[

= Γ up to renaming of the variables of type ?

Proof. These two statements are both proved by induction

(1) We prove this by induction on the structure of lists of contexts

• For the monoidal ps-context [], we have that

(
[]
[
)]

= (x0 : ?)] = []

• For a list of contexts of the form
[
Γ;∅

]
, we have

([
Γ;∅

][)]
=
(

Γ
[
, x`(Γ) : ?

)]
=
(

Γ
[
)]

= Γ

• For a list of context of the form
[
Γ; (∆, y : A)

]
, we have

([
Γ; (∆, y : A)

][)]
=
([

Γ; ∆
][
, y : ΣA

)]
=

(([
Γ; ∆

][)]
, y : (ΣA)−

)
=
([

Γ; ∆
]
, y : A

)
=
[
Γ; (∆, y : A)

]
the penultimate step is obtained by induction and applying the pre-

vious lemma.

(2) We prove this statement by induction on the structure of context

33

• Since a ps-context is never empty, we do the induction case on the

context (y : ?). We then have

(
(y : ?)]

)[
= [][= (x0 : ?)

So the two contexts are indeed equal up to the renaming of the vari-

able.

• For a context of the form (Γ, y : ?), we have that

(
(Γ, y : ?)]

)[
=
[
Γ];∅

][
=
((

Γ]
)[
, x`(Γ])+1 : ?

)

By induction, this is equal to (Γ, y : ?) up to renaming of the variables

of type ?.

• For a context of the form (Γ, y : A), we have that

(
(Γ, y : A)]

)[
=
[
(Γ], y : A−)

][
=
((

Γ]
)[
, y : Σ

(
A−
))

By induction and by the previous lemma, this is equal to (Γ, y : A)

up to renaming of the variables of type ?.

3.2 Translations for the structure in pasting schemes

We have defined a pair of translations back and forth between the monoidal ps-

contexts and the ps-contexts, proving that they are equivalent. We now show

that these translations extend to the types, terms and substitutions associated

to those.

Flattening. In order to be consistent with the shift in dimension occurring

while flattening a monoidal ps-context, we define the flattening to shift dimen-

sions of types, terms and substitutions as well. This is done by replacing the

type ? by an arrow and propagating this change by induction, to types, terms

and substitutions. We again use a family of fresh variables x0, x1, . . ., and al-

34

ways replace the type ? by an arrow between two of these fresh variables. In

order to know which of these variables should be used, we carry indices.

?[n,m = xn → xm

(
t −→
A
u
)[
n,m

= t[n,m −−−→
A[

n,m

u[n,m

(x)
[
n,m = x

(
cohΓ,A[σ]

)[
n,m

= coh
Γ
[
,A[

0,`(Γ)

(
σ[n,m

)
[]
[
n,n = 〈xn : ?〉 [σ; 〈〉][n,m = 〈σ[n,i, xm〉

[σ; 〈τ, t〉][n,m = 〈[σ; τ]
[
n,m , t

[
j,m〉

Where in the last case, i is the minimal index such that no variable in σ is

contained in a ps-context in position after i in Γ, and j is the maximal index

such that no variable of t is contained in a ps-context in position before j − 1

in Γ.

Proposition 11. The flattening sends derivable judgments in MCaTT onto

derivable judgments in CaTT, more precisely, chose n the maximal integer such

that no variable in Var(A) (resp. Var(t), Var(σ)) appears in a context in position

before (n−1) in the list Γ, and similarly, chose m the minimal integer such that

no variable in Var(A) (resp. Var(t), Var(σ)) appears in a context in position

after m before.

• If Γ ` A then Γ
[` A[n,m, (if A = ?, for all i < j ≤ `(Γ), we have Γ

[` ?[i,j)

• If Γ ` t : A then Γ
[` t[n,m : A[n,m

• If Γ `eq A then Γ
[`eq A

[
0,`(Γ)

• If Γ `op A then Γ
[`op A

[
0,`(Γ)

• If Γ ` σ : ∆ then Γ
[` σ[n,m : ∆

[
(if σ is of the form [σ, 〈〉], then there is

no condition on m)

Proof. This proof is done on mutual induction on the strucutres that we study

• Given a type A:

35

– If A is the type ?, and for any indices i < j < `(Γ), the associations

xi : ? and xj : ? appear in Γ
[
. Since by proposition 7, Γ

[`ps, this

shows that Γ ` xi : ? and Γ ` xj : ?, hence Γ ` xi → xj .

– If A is of the form t −→
A
u, then the indices n,m necessarily satisfy the

conditions for applying induction for the type A, and for the terms u

and v, thus by induction, we have that Γ
[` A[n,m, Γ

[` t[n,m : A[n,m

and Γ
[` u[n,m : A[n,m, so this proves that

Γ
[` t[n,m −−−→

A[
n,m

u[n,m

• Given a term Γ ` t : A :

– Either t = y is a variable, and in this case, A contains only variables,

thus A[n,m = Σn,mA. Moreover, if the pairing y : A appears in the

ps-contexts in position k in Γ, then n = k,m = k+ 1 and the pairing

y : Σk,k+1A appears in Γ
[
. Since by proposition 7, Γ

[`ps, it follows

that

Γ
[` y : A[k,k+1

– Or t is of the form coh∆,B(σ). In this case, by induction Γ
[` σn,m : ∆,

and moreover, either ∆ `op B, in which case we have ∆
[`op B

[
0,`(∆)

,

or ∆ `eq B, in which case we have ∆
[`eq B

[
0,`(∆)

. In both cases,

this shows that

Γ
[` coh

∆
[
,B[

0,`(∆)

(σ[n,m) : B[
0,`(∆)

[σ[n,m]

Moreover, by lemma 12 B[
0,`(∆)

[σ[n,m] = (B[σ])
[
n,m. This proves that

Γ
[` coh

∆
[
,B[

0,`(∆)

(σ[n,m) : A[n,m

• For a derivable judgment of the form Γ `eq A, necessarily, we have that

Γ ` A and Var(Γ) = Var(A), hence by induction Γ
[` A[

0,`(Γ)
. Moreover,

36

by lemma 12

Var(Γ
[
) = Var(A[)

This proves the derivability of the following judgment

Γ
[`eq A

[
0,`(Γ)

• For a derivable judgment of the form Γ `op A, if Γ is not of dimen-

sion 0, we necessarily have A = t −→
B

u, with Γ `ps, ∂−(Γ) ` t : B

and Var(∂−(Γ)) = Var(t : B). By induction, and by the variable condi-

tions, we have that ∂−(Γ)[` t[
0,`(∂−(Γ))

: A[
0,`(∂−(Γ))

. Moreover, by the

lemma 12, ∂−(Γ)[= ∂−(Γ
[
), moreover by lemma 5, `(∂−(Γ)) = `(Γ), thus

∂−(Γ
[
) ` t[

0,`(Γ)
: A[

0,`(Γ)
, finally, again by lemma 12

Var(∂−(Γ)[) = Var(t[
0,`(Γ)

: Var(A[
0,`(Γ)

))

The same argument holds for the judgments regarding the target, thus

Γ
[`op t

[
0,`(Γ)

: A[
0,`(Γ)

In the case where Γ is of dimension 0, then it is of the form

Γ = [(f1 : ?); · · · ; (fk : ?)]

So Γ
[
can be computed explicitly as

Γ
[

= (x0 : ?, x1 : ?, f1 : x0 → x1, x2 : ?, · · · , xk : ?, fk : xk−1 → xk)

And we have ?[0,k = x0 → xk, so we can check explicitly that

Γ
[`op ?

[
0,k

37

• If Γ ` σ : ∆ is a substitution, then there are three cases to solve.

– If σ is the empty substitution, for any index n < `(Γ), we have that

Γ
[` xn : ?, and []

[
n,n = 〈xn〉 hence

Γ
[` []

[
n,n : []

[

– If σ is of the form Γ ` [σ; 〈〉] :
[
∆;∅

]
, then the indices n, i satisfies the

induction condition, and by induction we have that Γ
[` σ[n,i : ∆

[
,

and Γ
[` xm : (y : ?), hence the derivation

Γ
[` 〈σ[n,i, xm〉 : ∆

[

– If σ is of the form Γ ` [σ; 〈σ′, t〉] :
[
∆; (∆′, y : A)

]
, then

[σ; 〈σ′, t〉][n,m = 〈[σ;σ′]
[
n,m , t

[
j,m〉

all the indices satisfy the induction conditions, an by induction, we

have the derivability of the two following judgments

Γ
[` [σ; τ]

[
n,m :

[
∆; ∆′

][
Γ
[` t[j,m : (A [σ;σ′])

[
j,m

Since the lemma 12 also shows, (A [σ;σ′])
[
j,m = A[

`(∆)−1,`(∆)

[
[σ;σ′]

[
j,m

]
,

this proves

Γ
[` [σ; 〈σ′, t〉][:

[
∆; (∆′, y : A)

][
From now on, for the sake of readability, and since they usually can be inferred,

we will often omit the indices while working with the flattening. Along the proof

of previous proposition, we have used the following properties, which should be

proved during the induction, and are simple enough to be left to the reader:

Lemma 12. The flattening is compatible with substitution application, source

38

and target in dimension non 0, and respect the equality of set of variables.

(1) If A is a type and σ is a substitution, then (A[σ])
[

= A[[σ[]

(2) If Γ is a ps-context of dimension non 0, then
(
∂−(Γ)

)[
= ∂−(Γ

[
) and(

∂+(Γ)
)[

= ∂+(Γ
[
)

(3) If Var(Γ) = Var(A) then Var(Γ
[
) = Var(A[), if Var(Γ) = Var(t : A), then

Var(Γ
[
) = Var(t[: A[)

Notations. In order to simplify the notation, we consider that the translation

_[acts directly on the judgment of the theory, and we write

(
Γ `ps

)[
= Γ

[`ps(
Γ ` A

)[
= Γ

[` A[(
Γ ` t : A

)[
= Γ

[` t[: A[(
Γ ` σ : ∆

)[
= Γ

[` σ[: ∆
[

where the indices that have been left implicit are the ones used in the proposi-

tion 11. We refer to these four judgments as monoidal ps-judgments.

Folding. Similarly, the folding operation that we have defined on ps-context

extends to types and terms in ps-contexts, along with substitutions between

ps-contexts. In order to treat the case for substitution, we need the following

notation.

〈σ, t〉 is the list σ with its last substitution extended with t

39

This allows to define the folding as a partial translation by mutual induction as

follows:

(
t −→
?
u
)]

= ?
(
t −→
?
u
)]

= t] −−→
A]

u]

x] = x cohΓ,A[σ]] = cohΓ],A] [σ]]

〈t〉] = [] 〈σ, t〉] = σ] 〈σ, t〉] = 〈σ], t]〉

Note that ?] is not defined.

Proposition 13. The folding operation sends derivable judgments in CaTT

onto derivable judgments in MCaTT, more precisely,

• If Γ ` A and A is not the type ? then Γ] ` A]

• If Γ ` t : A then Γ] ` t] : A]

• If Γ `eq A then Γ] `eq A
]

• If Γ `op A then Γ] `op A
]

• If Γ ` σ : ∆ then Γ] ` σ] : ∆]

Proof. Again, this is proved by mutual induction on the structure. The case

for substitution being very involved because of a double layered dependancy, we

just give a sketch of the proof.

• For a type Γ ` A, with A distinct from ? :

– If A is of the form t −→
?
u, then A] = ?, and by proposition 8, we have

that Γ] `ps, hence Γ] ` ?.

– If A is on the form t −→
B

u, with B 6= ?, then necessarily we have

Γ ` B, Γ ` t : B and Γ ` u : B, and thus by induction cases on types

and terms, we have Γ] ` B], Γ] ` t] : B] and Γ] ` u] : B]. This

proves Γ] ` A].

• For a term Γ ` t : A, with A 6= ?:

40

– If t = x is a variable, then since Γ is a ps-context, necessarily A

contains only variables, and the pairing x : A appears in Γ. By

definition, the pairing x : A− appears in Γ], and thus Γ] ` x : A−.

Since A contains only variables, we have that A− = A], and thus

Γ] ` A].

– If t = coh∆,B(σ) is a coherence, then t] = coh∆],B](σ]). We necessar-

ily have Γ ` σ : ∆, and by induction, Γ] ` σ] : ∆]. Moreover, either

∆ `eq B, in which case the induction gives ∆] `eq B
], or ∆ `op B,

in which case induction gives ∆] `eq B
]. In both cases, this proves

that Γ] ` t] : B][σ]], and since by lemma 14, B][σ]] = (B[σ])
], this

proves Γ] ` t] : A].

• For a judgment of the form Γ `eq A, we have Γ ` A and Var(Γ) = Var(A),

so by induction, we also have Γ] ` A]. Moreover, we have by lemma 14,

Var(Γ]) = Var(A]) and thus Γ] `eq A
].

• For a judgment of the form Γ `op A, necessarily we have A = t −→
B

u,

with ∂−(Γ) ` t : B and ∂+(Γ) ` u : B, and Var(∂−(Γ)) = Var(t : B),

Var(∂+(Γ)) = Var(u : B).

– If B is the type ?, then A] = ? and t and u are necessarily variables.

The variable conditions then imply that ∂−(Γ) and ∂+(Γ) are just

one point. This is only possible when Γ is of dimension 1, i.e., Γ] is

a list of containing all contexts isomorphic to D0, which proves that

Γ] `op ?.

– If B is not the type ?, then A] = t] −−→
B]

u]. By induction we have

(∂−(Γ))
] ` t] : A], with, by lemma 14, Var(∂−(Γ)

]
) = Var(t] : A]).

Again by lemma 14, we have (∂−(Γ))
]

= ∂−(Γ]), hence,

∂−(Γ]) ` t] : A]

Var(∂−(Γ])) = Var(t] : A])

41

The demonstration is symmetric for the case of ∂+(Γ), hence this

proves that Γ] `op A
]

• For substitutions :

– In the case of the substitution Γ ` 〈x〉 : D0, then σ] = [], and since

Γ] `, it follows that Γ] ` [] : []

– For a substitution of the form Γ ` 〈σ, t, u〉 : (∆, y : ?, f : x → y), we

have 〈σ, t, u〉] =
[
σ]; 〈u]〉

]
. Necessarily, t is a variable in Γ, and thus

this provides a split Γ] = Γ1@Γ2, with all variables in Γ1 appearing

before u and Γ and all variables in Γ2 appearing after u in Γ. By

induction, we have Γ] ` σ] : ∆]. Moreover σ] contains only variables

in Γ1, thus in fact Γ1 ` σ] : ∆]. Similarly, because of the way u

uses the variables, Γ2 ` u] : ?. This justifies the derivability of the

substitution Γ2 ` 〈u〉 : (f : ?), and hence, this proves that

Γ1@Γ2 `
[
σ, 〈u]〉

]
: [∆; (f : ?)]

– In the case of a substitution Γ ` 〈σ, t, u〉 : (∆, y : A, f : x → y),

we have that 〈σ, t, u〉] = 〈σ], t], u]〉. By induction, ∆] =
[
∆1; ∆′

]
,

σ] = [σ;σ′] and we have a split of the form Γ] = Γ1@Γ2, such that

Γ1@Γ2 ` 〈σ1;σ′〉 :
[
∆
′
1; ∆′

]
, with Γ1 ` σ1 : ∆1 and Γ2 ` σ′ : ∆′.

Moreover, by applying the induction twice, we have Γ2 ` t] : A][σ′]

and Γ2 ` u : A][〈σ′, t]〉], thus Γ2 ` 〈σ′, t], u]〉 : (∆, y : A], f : x→ y).

This justifies that

Γ1@Γ2 ` 〈σ1; 〈σ′, t], u]〉〉 :
[
∆1; (∆′; y : A]; f : x→ y)

]

Similarly to the case of the flattening, we have used the following properties,

which should be proved during the induction, but are simple enough to be left

42

out

Lemma 14. The folding operation respects application of substitutions, source

and target of ps-contexts and preserves equality of variables

(1) If A is a type distinct from ? and σ is a substitution, (A[σ])
]

= A][σ]]

(2) If Γ is a ps-context, (∂−(Γ))
]

= ∂−(Γ]) and (∂+(Γ))
]

= ∂+(Γ])

(3) If Var(Γ) = Var(A), then Var(Γ]) = Var(A]), and if Var(Γ) = Var(t : A),

then Var(Γ]) = Var(t] : A])

Notations. Similarly, we consider _] as acting on judgments on the theory

and denote

(Γ `ps)
]

= Γ] `ps

(Γ ` A)
]

= Γ] ` A]

(Γ ` t : A)
]

= Γ] ` t] : A]

(Γ ` σ : ∆)
]

= Γ] ` σ] : ∆]

These four judgments be called ps-judgments in the theory CaTT. In this case

they are no different from usual judgments between ps-contexts, but they play

an important role in their interaction with the theory MCaTT.

Interaction between flattening and folding. In proposition 10, we have

proved that the flattening and the folding were inverse of each other on ps-

contexts, we now show that this extends to all ps-judgments, i.e., these opera-

tions are inverse on terms, types and substitutions in ps-contexts.

Proposition 15. For any monoidal ps-judgment J in MCaTT,

(J[)] = J

43

For any ps-judgment J in CaTT,

(J])[' J up to renaming of the variables of type ?.

Proof. Note that we have already proved the equality in the case of a judgment of

the form Γ `ps. The other cases are done by mutual induction on the structure.

• For types:

– In the case of the type ?, we have that

(
(?)

[
n,m

)]
=
(
xn −→

?
xm

)]
= ?

– In the case of the type t −→
A
u, we have

((
Γ ` t −→

A
u
)[)]

= (t[)] −−−→
(A[)]

(u[)]

and by induction
(
A[
)]

= A,
(
t[
)]

= t and
(
u[
)]

= u, which proves

that ((
t −→
A
u
)[)]

= t −→
A
u

• For terms :

– In the case of a variable, we have

(
x[
)]

= x] = x

– In the case of a coherence, we have

((
cohΓ,A(σ)

)[)]
=
(
coh

Γ
[
,A[(σ

[)
)]

= coh(
Γ
[
)]
,(A[)

]

((
σ[
)])

44

By induction,
(

Γ
[
)]

= Γ,
(
A[
)]

= A and
(
σ[
)]

= σ, hence

((
cohΓ,A(σ)

)[)]
= cohΓ,A(σ)

• For substitutions :

– In the case of the empty list, we have

(
[]
[
n,m

)]
= 〈xn〉] = []

– In the case of a non empty list, notice that the none of the component

of the list can be empty since this is not allowed for substitutions in

monoidal ps-contexts. In the case where the last substitution of the

list is of lentgh 1, we have

(
[σ; 〈t〉][

)]
= 〈σ[, xk+1, t

[〉] =

[(
σ[
)]
, 〈
(
t[
)]
〉
]

since xk+1 is necessarily of dimension 0. The induction gives the

equalities
(
σ[
)]

= σ and
(
t[
)]

= t, which proves that

(
[σ; 〈t〉][

)]
= [σ; 〈t〉]

– In the case of a non emtpy list, with the last substitution of length

n > 1, we have

(
[σ; 〈τ, t〉][

)]
= 〈[σ; τ]

[
, t[〉] = 〈

(
[σ; τ]

[
)]
,
(
t[
)]
〉

The induction provides the equalities
(

[σ; τ]
[
)]

= [σ; τ] and
(
t[
)]

= t,

hence we have (
[σ; 〈τ, t〉][

)]
= [σ; 〈τ, t〉]

For the converse equality, the same mutually inductive arguments applies, but

45

one has to carry all the renaming of variables of dimension 0 everywhere. We do

not give a full proof here, since the equality in this direction will not be useful

for us.

3.3 Translations for the syntactic categories

We have defined two operations of flattening and folding that establish a corre-

spondence between the judgments in a ps-context of CaTT and the judgments

in a monoidal ps-context of MCaTT. We now extend these operations to all

judgments on both type theories, defining a pair of functors between SCaTT and

SMCaTT. We also show that these functors respect a lot of the structure of cat-

egory with families of both syntactic categories. We will see in the next section

what is the exact structure that is missing, and how this reflects on the models.

Flattening. We extend the falttening operation to all judgments of the type

theory, defining a translation that we call ι which associates to any judgment

in MCaTT a judgment in CaTT. This is done by induction on the structure of

the type theory.

ι∅ = (x0 : ?) ι(Γ, y : A) = (ιΓ, y : ιA)

ι? = x0 −→
?
x0 ιx −→

A
y = ιx −→

ιA
ιy

ιx = x ι
(
cohΓ,A(σ)

)
=
(
cohΓ,A

)[
(ισ)

ι〈〉 = 〈x0〉 ι〈σ, t〉 = 〈ισ, ιt〉

ι[] = 〈x0〉 ι [σ; τ] = 〈ισ, ιτ〉

Proposition 16. This translation sends derivable judgments in MCaTT onto

derivable judgments in CaTT, more precisely

• If Γ ` then ιΓ `

• If Γ ` A then ιΓ ` ιA and ι(Γ, y : A) = (ιΓ, y : ιA)

• If Γ ` t : A then ιΓ ` ιt : ιA

46

• If Γ ` σ : ∆ then ιΓ ` ισ : ι∆ and ι〈σ, t〉 = 〈ισ, ιt〉

• If Γ ` σ : ∆ then ιΓ ` ισ : ∆
[

Proof. All these statements are proved by mutual induction on the structure of

a type theory. In the case of substitutions to a monoidal ps-context, we just

give a sketch of proof, since it contains two layers of inductions, which makes

the reasoning hard to track if we write it all completely.

• A context is either the empty context ∅ or of the form (Γ, y : A).

– In the case of the empty context, we have that ι∅ = (x0 : ?), and

thus ι∅ `.

– In the case of a context of the form (Γ, y : A), we necessarily have

that Γ ` A, and thus by induction on the case for types, ιΓ ` ιA,

which proves that ι(Γ, y : A) `.

Note that that for any context Γ in MCaTT, we have ιΓ ` x0 : ?, since it

is already true for the empty context.

• A type is either ? or of the form t −→
A
u.

– In the case of the type Γ ` ?, we have ι? = x0 −→
?
x0, and since we

always have ιΓ ` x0 : ?, this proves that ιΓ ` ι?.

– In the case of a type of the form Γ ` t −→
A

u, we necessarily have

Γ ` t : A and Γ ` u : A. The induction case for the term on both

judgments shows that ιΓ ` ιu : ιA and ιΓ ` ιt : ιA. This proves

ιΓ ` ι
(
t −→
A
u
)

• A term Γ ` t : A is either a variable or a coherence.

– For a variable Γ ` x : A, we then have that the pairing x : A appears

in the list Γ, and thus by construction, the pairing x : ιA appears in

the list ιΓ. This proves that ιΓ ` x : ιA.

47

– For a coherence of the form t = coh∆,B(σ), we have

ιt =
(
coh∆,B(id∆)

)[
[σ]

By the induction case for substitution towards a monoidal ps-context,

we have ιΓ ` ισ : ∆
[
, and by the proposition 11, we have that

∆
[`

(
coh∆,B(id∆)

)[
, so this proves ιΓ ` ιt : B[[ισ], and since, by

lemma 18, B[[ισ] = ι (B[σ]), this shows that ιΓ ` ιt : ιA.

• A substitution is either 〈〉 or of the form 〈σ, t〉.

– For the substitution Γ ` 〈〉 : ∅, we have ι〈〉 = 〈x0〉, and since we

necessarily have that ιΓ ` x0 : ?, this proves ιΓ ` 〈x0 : ?〉 : (x0 : ?).

– For a substitution of the form Γ ` 〈σ, t〉 : (∆, y : A), we have

ι〈σ, t〉 = 〈ισ, ιt〉, and by induction cases on substitutions on types

and on terms, we have ιΓ ` ισ : ι∆, ι∆ ` ιA and ιΓ ` ιt : ι (A[σ]).

Since, by lemma 18, ι (A[σ]) = ιA[ισ], this proves that the substitu-

tion ιΓ ` 〈ισ, ιt〉 : (ι∆, y : ιA) is derivable.

• A substitution to a monoidal ps-context is either [] or of the form [σ, τ].

– For the substitution Γ ` [] : [], we have ι [] = 〈x0〉 and since we always

have ιΓ ` x0 : ?, this proves that ιΓ ` 〈x0〉 : (x0 : ?).

– For a substitution of the form Γ ` [σ; 〈〉] :
[
∆; []

]
, we have that

ι [σ; []] = [ισ; 〈x0〉], and by the induction, we have Γ ` σ : ∆ and

ιΓ ` x0 : ?. This proves that ιΓ ` 〈ισ, x0〉 :
[
∆, []

][
.

– For a substitution of the form

Γ ` 〈τ, t, u〉 : ∆′, z : B, f : y → z

then by induction we have that ιΓ ` ι [σ; τ] :
[
∆,∆′

][
, and by two suc-

cessive induction ιΓ ` ιt : ι (B[σ; τ]) and ιΓ ` ιu : ι ((y → z) [σ; 〈τ, t〉]).

48

Using the lemma 18 twice, we get the derivation of the judgment

ιΓ ` ι〈σ, t, u〉 : ιA

Note 17. This proposition may seem to indicate that ι defines a morphism of

categories with families, but crucially this is not actually the case. In fact ι

preserves all the structural rules of the type theory but one: it does not send

the terminal object onto the terminal object. Indeed, the terminal object in

SMCaTT is the context empty context ∅, and it is sent onto the context (x0 : ?)

in SCaTT, which is not terminal.

Along the proof of the proposition 16, we have used some properties of the

translation ι, which should be proved by induction together with the statements,

but which we have left out.

Lemma 18. The translation ι respects the two types of substitutions.

(1) If A is a type and σ is a substitution to a monoidal ps-context, then

ι (A[σ]) = A[[ισ]

(2) If A is a type and σ is a substitution, then ι (A[σ]) = ιA[ισ]

Folding. Similarly, we extend the folding operation defined on judgments in a

ps-context to any judgment, by a translation κ which sends judgments of CaTT

49

onto judgments of MCaTT.

κ∅ = ∅ κ(Γ, x : A) =

 κΓ if A = ?

(κΓ, x : κA) otherwise

κ
(
t −→
?
u
)

= ? κ
(
t −→
A
u
)

= κt −−→
κA

κu

κx = x κ (cohΓ,A(σ)) = (cohΓ,A)
]
(κ]σ)

κ〈〉 = 〈〉 κ〈σ, t〉 =

 κσ if dim t = 0

〈κσ, κt〉 otherwise

κ]〈t〉 = [] κ]〈σ, t〉 =


[
κ]σ; 〈〉

]
if dim t = 0

〈κ]σ, κt〉 otherwise

Note that again, the translation κ is not properly defined on the type ?

Proposition 19. This translation sends derivable judgments in CaTT onto

derivable judgments in MCaTT, more precisely

• If Γ ` then κΓ `

• If Γ ` A with A 6= ?, then κΓ ` κA and κ(Γ, y : A) = (ιΓ, y : κA)

• If Γ ` t : A with A 6= ?, then κΓ ` κt : κA

• If Γ ` σ : ∆ then κΓ ` κσ : κ∆ and when dim t > 1, κ〈σ, t〉 = 〈κσ, κt〉

• If Γ ` σ : ∆ then κΓ ` κ]σ : ∆]

Proof. All these statements are proved by mutual induction on the structure

that we study

• A context is either ∅ or of the form (Γ, y : A).

– In the case of ∅, we have that κ∅ = ∅ and thus κ∅ `.

– For a context of the form (Γ, y : ?), we have that κ(Γ, y : ?) = κΓ,

and thus by induction κ(Γ, y : ?) `.

50

– For a context of the form (Γ, y : A), with A 6= ?, we have that

κ(Γ, y : A) = (κΓ, y : κA). By induction, we have κΓ ` and κΓ ` κA,

thus this proves κ(Γ, y : A) `

• A term distinct from ? is necessarily of the form Γ ` t −→
A
u.

– If A = ?, then we have κ
(
t −→
?
u
)

= ?. By induction we have that

κΓ `, and thus κΓ ` ?.

– If A is not the type ?, we have κ
(
t −→
A
u
)

= κt −−→
κA

κu. Moreover,

necessarily we have Γ ` t : A and Γ ` u : A, thus by induction

we also have, κΓ ` κt : κA and κΓ ` κu : κA. This proves that

κΓ ` κ
(
t −→
A
u
)

• A term Γ ` t : A is either a variable or a coherence.

– For a variable y of type A which is not ?, the pairing y : A is contained

in the context Γ, thus the pairing (y : κA) is contained in the context

κΓ, hence we have κΓ ` y : κA.

– In the case of a coherence t = coh∆,B(σ), we have that

κ (coh∆,B(σ)) = (coh∆,B)
]
(κ]σ)

By the proposition 13, we have that ∆] ` (coh∆,B) (id∆), and by

induction we have κΓ ` κ]σ : ∆]. This proves that

κΓ ` (coh∆,B)
]
(κ]σ) : B][κ]σ]

Since by lemma 21, B][κ]σ] = κ (B[σ]), this proves that κΓ ` κt : κA.

• A substitution is either 〈〉 or it is of the form 〈σ, t〉.

– In the case of the substitution Γ ` 〈〉 : ∅, we have κ〈〉 = 〈〉 and

κ∅ = ∅. So we have κΓ ` κ〈〉 : κ∅.

51

– In the case of a substitution of the form Γ ` 〈σ, t〉 : (∆, y : ?),

we necessarily have Γ ` σ : ∆, thus by induction κΓ ` κσ : κ∆.

Moreover, necessarily dim t = 1, and thus κ〈σ, t〉 = κσ. This proves

that κΓ ` κ〈σ, t〉 : κ(∆, y : ?).

– In the case of a substitution of the form Γ ` 〈σ, t〉 : (∆, y : A), with

A distinct from ?, then κ〈σ, t〉 = 〈κσ, κt〉 and we necessarily have

that Γ ` σ : ∆, ∆ ` A and Γ ` t : A[σ]. So by induction, we have

that κΓ ` κσ : κ∆, κ∆ ` κA and also κΓ ` κt : κ (A[σ]). Since, by

lemma 21, κ (A[σ]) = κA[κσ], this proves that

κΓ ` κ〈σ, t〉 : κ(∆, y : A)

• A substitution is either 〈〉 or it is of the form 〈σ, t〉.

– In the case of the substitution Γ ` 〈〉 : ∅, we have κ]〈〉 = []. So we

have κ]Γ ` [] : [].

– In the case of a substitution of the form Γ ` 〈σ, t〉 : (∆, y : ?),

we necessarily have Γ ` σ : ∆, thus by induction κΓ ` κ]σ : ∆].

Moreover, necessarily dim t = 1, and thus κ]〈σ, t〉 =
[
κ]σ, 〈〉

]
. This

proves that κΓ ` κ]〈σ, t〉 : (∆, y : ?)].

– In the case of a substitution of the form Γ ` 〈σ, t〉 : (∆, y : A),

with A distinct from the type ?, then κ]〈σ, t〉 = 〈κ]σ, κt〉 and we

necessarily have that Γ ` σ : ∆, ∆ ` A and Γ ` t : A[σ]. So

by induction, we have that κΓ ` κ]σ : ∆], κ∆ ` κA and also

κΓ ` κt : κ (A[σ]). Since by the lemma 21, κ (A[σ]) = κA[κ]σ],

this proves that κΓ ` κ]〈σ, t〉 : (∆, y : A)].

Note 20. Again this proposition states that κ almost defines a morphism of

categories with families from SCaTT to SMCaTT. Here it fails to do so because it

is partial, there is no image for the type ?, nor for any term of dimension 0.

52

Again, during the proof of the proposition 19, we have used some properties

followed by κ and κ], which should be proved by induction together with these

statements, but that we omit

Lemma 21. The translations κ and κ] respect the application of substitutions.

(1) If A is a type and σ is a substitution to a ps-context, κ (A[σ]) = κA[κ]σ]

(2) If A is a type and σ is a substitution, κ (A[σ]) = κA[κσ]

Interaction between flattening and folding. The previous result exhibit-

ing the flattening and folding as inverses for ps-judgments extends to the full

fledged type theory only in one direction.

Proposition 22. the functor κ is a retract of the functor ι

κ ◦ ι = idSMCaTT

Proof. This is proven by structural induction on the various objects of the theory

• Context are either of the form ∅, or of the form (Γ, x : A).

– For ∅, we have ι∅ = (x0 : ?), and κ(x0 : ?) = ∅, thus κ(ι∅) = ∅.

– For a context of the form (Γ, x : A), we have ι(Γ, x : A) = (ιΓ, x : ιA),

and κ(ι(Γ, x : A)) = (κ(ιΓ), x : κ(ιA)). By the induction case for

context, we have κ(ιΓ) = Γ, and by the induction case for type we

have κ(ιA) = A, hence κ(ι(Γ, x : A)) = (Γ, x : A).

• Types are either of the form ? of or the form t→ u.

– For the type ?, we have ι? = x0 −→
?
x0 and κ

(
x0 −→

?
x0

)
= ?, hence

κ(ι?) = ?.

– For a type of the form t −→
A
u, we have ι

(
t −→
A
u
)

= ιt −→
ιA

ιu, and

κ
(
ι
(
t −→
A
u
))

= κ(ιt) −−−→
κ(ιA)

κ(ιu). By the induction cases for types

and terms, we haveκ
(
ι
(
t −→
A
u
))

= t −→
A
u.

53

• Terms are either a variable or a coherence applied.

– For a term of the form of a variable x, ιx = x and κx = x, thus

κ(ιx) = x.

– For a term which is an applied coherence t = cohΓ,A[σ], we have

ιt =
(
cohΓ,A

)]
(ισ)

κ(ιt) =

((
cohΓ,A

)])[
(κ](ισ)).

By the proposition 15 and the induction case for the substitutions to

a monoidal ps-context, this proves

κι(cohΓ,A(σ)) = cohΓ,A(σ)

• Substitutions are of the form 〈〉 or 〈σ, t〉.

– For the subsitution 〈〉, we have ι〈〉 = 〈x0〉 and κ〈x0〉 = 〈〉 since x0 is

of dimension 0. Hence κ(ι〈〉) = 〈〉.

– For a substitution of the form 〈σ, t〉, we have

ι〈σ, t〉 = 〈ισ, ιt〉 κ〈ισ, ιt〉 = 〈κισ, κιt〉

since necessarily dim(ιt) > 0. Hence, by induction case for the sub-

situtions and for the terms, κ(ι〈σ, t〉) = 〈σ, t〉.

• A substitution to a monoidal ps-context is either [] or of the form [σ, τ].

– For the substitution [], we have ι([]) = 〈x0〉, and κ](〈x0〉) = [], hence

κ](ι []) = [].

– For a substitution of the form [σ, τ], we have ι [σ, τ] = 〈ισ, ιτ〉. Since

ιτ has to start with the variable x0 of dimension 0 and contains no

other variable of dimension 0, it follows that κ(〈ισ, ιτ〉) = [κ(ισ);κ(ιτ)].

54

By the induction case on substitution ot a monoidal ps-context and

on substitution, we deduce that

κ(ισ) = σ

In the converse direction, the result does not hold anymore, intuitively, given

a context Γ in the theory CaTT, the context ι(κΓ) is equal to the context Γ

where all variables of dimension 0 have been identified. The correct way to

formalize this intuition would be to use a most general unifier, which in the case

of this theory is a particular case of equalizer[7], however we will not need this

construction for proving our result of interest.

3.4 Correctness

Now that we have established translations between MCaTT and CaTT, we can

prove the correctness of the type theory MCaTT, i.e., its models are equivalent to

the models of CaTT with only one 0-cell. While the definition of the translations

merely formalized the intuition behind MCaTT, this part really justifies what

makes this intuition correct, by making these translations interact with the

structures of category with families of the syntactic categories on each side.

Lemma 23. Given a model F : SCaTT → Set, the functor induced by the pre-

composition with ι, ι∗(F) : SMCaTT → Set defines a model of SMCaTT if and only

if F is a ω-category with only one 0-cell (i.e., F is an object of Mod• (SCaTT))

Proof. Consider a model of F : SCaTT → Set together with the induced functor

ι∗(F) : SMCaTT → Set. By the proposition 16 and the note 17, ι∗F may fail

to be a model of SMCaTT in only one way: it might not preserve the terminal

object. All the rest of the structure of category with families is necessarily

preserved by ι∗(F). This means that ι∗(F) is a model of SMCaTT if and only

if ι∗(F)(∅) is the terminal set {•}. Note that ι∗(F)(∅) = F (ι∅) = F (D0). So

ι∗(F) is a model of SMCaTT if and only if F (ιD0) = {•}, that is, by definition,

if and only if F is an object of Mod• (SCaTT).

55

In particular, this lemma implies that the functor ι induces a functor

ι∗ : Mod• (SCaTT)→Mod (SMCaTT)

Lemma 24. For any model of the theory MCaTT, F ∈ Mod (SMCaTT), the

induced functor κ∗(F) : SCaTT → Set defines essentially uniquely a model of

SCaTT.

Proof. Since κ preserves all the structure of category with families where it is

defined, it is also the case for κ∗(F). So it suffices to check that κ∗(F) can be

extended to transport all judgments in a unique way. In particular the only two

kinds of judgments that cannot be transported through κ are the ones of the

form Γ ` ? and Γ ` t : ?. Suppose that there is such a way to transport the

type ?, then it has to satisfy

κ∗(F)(Γ, x : ?) = (κ∗(F)(Γ), κ∗(F)(?))

Since κ(Γ, x : ?) = κΓ, it follows that κ∗(F)(Γ, x : ?) = κ∗(F)(Γ). On the other

hand, (κ∗(F)(Γ), κ∗(F)(?)) is obtained as the pullback

(κ∗(F)(Γ), κ∗(F)(?)) (κ∗(F)(?))

κ∗(F)(Γ) {•}

y

so κ∗(F)(?) has to satisfy the equation, for all context Γ,

κ∗(F)(Γ)× κ∗(F)(?) ' κ∗(F)(Γ)

This implies that κ∗(F)(?) has to be isomorphic to the singleton {•}. Now we

have to define an image for the term judgments of the form Γ ` t : ?. The image

of such a judgment has to be an element of the type image of the judgment

Γ ` ?, which is a singleton set {•}, so there is no other choice than taking

the unique element of the singleton. Conversely, extending κ∗(F) with these

56

images defines a morphism of category with families, as we designed them to be

compatible with context extension and substitution extension.

This lemma lets us consider κ∗ as a functor κ∗ : Mod (SMCaTT)→Mod (SCaTT)

and by definition of κ∗(F), we have that κ∗(F)(D0) = {•}, so in fact κ∗ core-

stricts as

κ∗ : Mod (SMCaTT)→Mod• (SCaTT)

Theorem 25. The category of models of SMCaTT is equivalent to the category

Mod• (SCaTT). More precisely the pair functors

Mod• (SCaTT) Mod (SMCaTT)
ι∗

κ∗

is an equivalence of categories.

Proof. Since κ is a retract of ι, it follows that ι∗ ◦ κ∗ = idMod(SMCaTT), so it

suffices to show that conversely κ∗ ◦ ι∗ = idMod• (SCaTT). Consider a category

with only one object, F ∈Mod• (SCaTT), we show by induction on the length

of Γ that κ∗(ι∗F)(Γ) is isomorphic to F (Γ).

• If Γ = ∅, and ι(κΓ) is the context (x0 : ?) (disk of dimension 0). Since

F ∈ Mod• (SCaTT), F (ι(κΓ)) = {•} is a singleton, and by definition of

a model of SCaTT, F (∅) = {•} is also a singleton. Hence, κ∗(ι∗F)(∅) is

isomorphic to F (∅).

• If Γ is of the form (Γ′, x : A) with A distinct from the type ?, then

κ(Γ′, x : A) = (κΓ′, x : κA) and thus

ι(κ(Γ′, x : A)) = (ι(κΓ′), ικA)

Hence, by induction hypothesis,

F (ι(κ(Γ′, x : A))) = (F (ι(κΓ′)), F (ι(κA))) ' (F (Γ′), F (A)) = F (Γ′, x : A)

57

• If A is the type ?, then κ(Γ′, x : ?) = κ(Γ′) and ι(κ(Γ′, x : ?)) = ι(κΓ′),

hence F (ι(κ(Γ′, x : ?))) = F (ι(κΓ′)). But on the other hand, the image

F (Γ′, x : ?) = (F (Γ′), F (?)) is obtained as the following pullback

F (Γ) F (D0)

F (Γ′) F (∅)

y

Since F is a category with only one object, this pullback rewrites as

F (Γ) {•}

F (Γ′) {•}

y

which shows that F (Γ) is isomorphic to F (Γ′). Hence we have proved that

in both cases, F (Γ) is isomorphic to F (ι(κΓ)).

4 Conclusion

We have developed the type theory MCaTT whose models are monoidal weak

ω-categories. This requires to shift perspective a little and define lists of contexts

together with types, terms and substitutions associated. Although this is not a

usual structure in type theory, it appears quite naturally here. We then have

defined, using purely syntactic methods, translations between these two type

theories. We showed how to prove a result of correctness of the models of this

theory using these translations, thus establishing a close connection between the

syntactic comparison of the two theories, and the comparison of their models.

This gives a the sketch for a general method that could apply to study weak

ω-categories with other extra structure.

A forgetful functor. There is another (more obvious) translation from SCaTT

to SMCaTT that we have not presented here. Given a ps-context Γ in the CaTT

theory, it simply gives a monoidal ps-context by considering the one-element list

58

[Γ]. This observation lifts on types, terms, regular contexts and substitutions,

and gives a morphism of category with families

u : SCaTT → SMCaTT

The induced functor on the categories of models

u∗ : Mod (SMCaTT)→Mod (SCaTT)

is the forgetful functor, which, given a monoidal weak ω-category, forgets the

monoidal product and gives the underlying weak ω-category. Importantly, in

this case there is no shift of dimension; the objects of the ω-category are the

objects of the monoidal ω-category, but without the ability to be composed. The

existence of this functor is closely related to the well definedness of an operation

of suspension in the theory CaTT[8].

Multiply monoidal ω-categories A natural generalisation of this result

would consist in giving a type-theoretical definition of k-tuply weak ω-cate-

gories [4, 3] for any k ∈ N. These can be defined inductively by saying that

(k+ 1)-tuply monoidal categories are equivalent to k-tuply monoidal categories

with only one object. The theory CaTT solves the case k = 0, and the theory

MCaTT that we present in this article solves the case k = 1. We believe that

similar ideas will also work in all other cases. More precisely, we define induc-

tively a (k+ 1)-monoidal ps-context to be a list of k-monoidal ps-contexts, and

we endow them with types, terms and substitutions, satisfying rules that are

akin to the ones of MCaTT. Let us denote the resulting theories k-MCaTT. We

expect the models of (k+1)-MCaTT to be equivalent to the models of k-MCaTT

with only one object, and the proof should work along the same line, by defining

a pair of translations between the two theories. However, the translations shall

be significantly more difficult to define, and let us consider the case k = 1 to un-

derstand why. The syntactic category of MCaTT has, as objects, the monoidal

59

weak ω-categories which are freely finitely generated, so intuitively, we want to

define a functor relating contexts in 2-MCaTT with contexts of MCaTT which

have only one object. However, no freely finitely generated monoidal weak ω-

category has only one object, since as soon as it contains one of them, it also

contains all its iterated products. Thus in order to translate all the terms, the

translation will have to encompass a strictification procedure. We expect this

to be a technical difficulty rather than a theoretical obstacle, since at the levels

of categories, the strictification only cares for compositions of identities and it

is a very minimal setting in which a strictification can be expected.

Symmetric monoidal ω-categories Notice that the argument giving the

functor u : SCaTT → SMCaTT works in a similar way for defining

u : Sk-MCaTT → S(k+1)-MCaTT

A k-monoidal context is naturally a (k + 1)-monoidal context, by considering

the one-element list containing this k-monoidal context. This allows for a slight

reformulation of the theory k-MCaTT, where instead of considering k-iterated

lists, we consider n-iterated lists with (n ≤ k) and we identify an object with

the list containing only this object. Due to this reformulation, one can transfer

proofs from the theory k-MCaTT to the theory (k + 1)-MCaTT, showing that

any result derived in k-MCaTT still holds in (k+1)-MCaTT. This would allow to

use developments carried in one theory, to be freely obtained in other theories,

thus factorizing a lot of common proofs in monoidal categories with various

multiplicity. On a theoretical level, introducing this change seems harmless, but

it allows for a proposition of a theory∞-MCaTT whose models are∞-monoidal

weak ω categories (aka. symmetric monoidal weak ω-categories), simply by

dropping the condition (n ≤ k).

Monoidal closed higher categories. It would be valuable to connect the

result we have presented with recent work of Finster for integrating the theory

60

of monoidal higher categories in the tool Opetopic [12], although it necessitates

to establish a connection between globular shapes and opetopic shapes.

Implementation. An implementation of the type theory CaTT is available

at [6]. Although it has not been done yet due to time constraints, another

implementation for the type theory MCaTT is planned for future works, as well

as eventually an implementation for k-MCaTT and ∞-MCaTT

References

[1] Thorsten Altenkirch and Ondrej Rypacek. A syntactical approach to

weak omega-groupoids. In Computer Science Logic (CSL’12)-26th Interna-

tional Workshop/21st Annual Conference of the EACSL. Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2012.

[2] Dimitri Ara. Sur les ∞-groupoïdes de Grothendieck et une variante ∞-

catégorique. PhD thesis, Ph. D. thesis, Université Paris 7, 2010.

[3] John Baez. Lectures on n-categories and cohomology. Notes by M. Shul-

man.

[4] John C Baez and James Dolan. Higher-dimensional algebra and topological

quantum field theory. Journal of Mathematical Physics, 36(11):6073–6105,

1995.

[5] Michael A Batanin. Monoidal globular categories as a natural environment

for the theory of weakn-categories. Advances in Mathematics, 136(1):39–

103, 1998.

[6] Thibaut Benjamin, Eric Finster, and Samuel Mimram. The CaTT proof

assistant, 2018. https://github.com/ThiBen/catt.

[7] Thibaut Benjamin, Eric Finster, and Samuel Mimram. Globular weak ω-

categories as models of a type theory. In preparation, 2019.

61

https://github.com/ThiBen/catt

[8] Thibaut Benjamin and Samuel Mimram. Suspension et Fonctorialité: Deux

Opérations Implicites Utiles en CaTT. In Journées Francophones des Lan-

gages Applicatifs, 2019.

[9] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type

theory. arXiv preprint arXiv:1606.05916, 2016.

[10] Eugenia Cheng and Aaron Lauda. Higher-dimensional categories: an illus-

trated guide book. Preprint, 2004.

[11] Peter Dybjer. Internal Type Theory. In Types for Proofs and Programs.

TYPES 1995, pages 120–134. Springer, Berlin, Heidelberg, 1996.

[12] Eric Finster. Opetopic. https://github.com/ericfinster/opetopic.

[13] Eric Finster and Samuel Mimram. A Type-Theoretical Definition of Weak

ω-Categories. In 2017 32nd Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), pages 1–12, 2017.

[14] Alexander Grothendieck. Pursuing stacks. unpublished manuscript, 1983.

[15] Tom Leinster. A survey of definitions of n-category. Theory and applications

of Categories, 10(1):1–70, 2002.

[16] Tom Leinster. Higher operads, higher categories, volume 298. Cambridge

University Press, 2004.

[17] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory.

In International Conference on Typed Lambda Calculi and Applications,

pages 172–187. Springer, 2009.

[18] Saunders Mac Lane. Categories for the working mathematician, volume 5.

Springer Science & Business Media, 2013.

[19] Georges Maltsiniotis. Grothendieck ∞-groupoids, and still another defini-

tion of ∞-categories. Preprint arXiv:1009.2331, 2010.

62

https://github.com/ericfinster/opetopic

[20] The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. https://homotopytypetheory.org/book,

Institute for Advanced Study, 2013.

[21] Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids.

Proceedings of the London Mathematical Society, 102(2):370–394, 2011.

63

https://homotopytypetheory.org/book

	Type theory for weak -categories
	Type theoretical notations and conventions
	Globular sets
	Pasting schemes and ps-contexts
	The type theory CaTT

	Type theory for monoidal weak -category
	Lists of contexts
	The type theory MCaTT
	Examples of derivations

	Correctness
	Translation for pasting schemes
	Translations for the structure in pasting schemes
	Translations for the syntactic categories
	Correctness

	Conclusion

