Dirac.mw

Functions with discontinuities. Dirac and continuous approximations. 

 

Clara MASSE, John MASSE, François OLLIVIER 

 

The derivative of the Heaviside function is the Dirac function 

> diff(Heaviside(x), x)
 

Dirac(x) (1)
 

The numerical evaluation of this function using "piecewise" is the same, but its derivative different. 

> diff(piecewise(`>`(x, 0), 1, 0), x)
 

piecewise(x = 0, undefined, 0) (2)
 

Using Heaviside, one may invert "int" and "diff" where the function is differentiable. 

> diff(int(Heaviside(`+`(y, `-`(a))), y = 0 .. x), a); 1
 

`+`(`-`(`*`(Dirac(`+`(x, `-`(a))), `*`(x))), `*`(Dirac(`+`(x, `-`(a))), `*`(a)), `-`(Heaviside(`+`(x, `-`(a)))), `-`(`*`(Dirac(a), `*`(a))), Heaviside(`+`(`-`(a)))) (3)
 

> int(diff(Heaviside(`+`(y, `-`(a))), a), y = 0 .. x); 1
 

`+`(`-`(Heaviside(`+`(x, `-`(a)))), 1, `-`(Heaviside(a))) (4)
 

This no longer works with to successive integrations and derivations. 

> diff(int(int(Heaviside(`+`(y, `-`(a))), y = 0 .. y1), y1 = 0 .. x), a, a); 1
 

`+`(`*`(`/`(1, 2), `*`(Dirac(1, `+`(x, `-`(a))), `*`(`^`(x, 2)))), `-`(`*`(`/`(1, 2), `*`(Dirac(1, `+`(x, `-`(a))), `*`(`^`(a, 2))))), `*`(2, `*`(Dirac(`+`(x, `-`(a))), `*`(x))), Heaviside(`+`(x, `-`(...
`+`(`*`(`/`(1, 2), `*`(Dirac(1, `+`(x, `-`(a))), `*`(`^`(x, 2)))), `-`(`*`(`/`(1, 2), `*`(Dirac(1, `+`(x, `-`(a))), `*`(`^`(a, 2))))), `*`(2, `*`(Dirac(`+`(x, `-`(a))), `*`(x))), Heaviside(`+`(x, `-`(...
`+`(`*`(`/`(1, 2), `*`(Dirac(1, `+`(x, `-`(a))), `*`(`^`(x, 2)))), `-`(`*`(`/`(1, 2), `*`(Dirac(1, `+`(x, `-`(a))), `*`(`^`(a, 2))))), `*`(2, `*`(Dirac(`+`(x, `-`(a))), `*`(x))), Heaviside(`+`(x, `-`(...
(5)
 

> int(int(diff(Heaviside(`+`(y, `-`(a))), a, a), y = 0 .. y1), y1 = 0 .. x); 1
 

0 (6)
 

In a numerical environment, one may use some approximation of Heaviside, e.g. with "erf" function. 

> resu := int(int(diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), y = -1 .. y1), y1 = -1 .. x); 1
 

`+`(`-`(`/`(`*`(`/`(1, 2), `*`(`+`(`*`(erf(`+`(`*`(a, `*`(b)), `-`(`*`(b, `*`(x))))), `*`(exp(`+`(`*`(`^`(a, 2), `*`(`^`(b, 2))), `*`(2, `*`(a, `*`(`^`(b, 2)))), `*`(`^`(b, 2)))), `*`(`^`(Pi, `/`(1, 2...
`+`(`-`(`/`(`*`(`/`(1, 2), `*`(`+`(`*`(erf(`+`(`*`(a, `*`(b)), `-`(`*`(b, `*`(x))))), `*`(exp(`+`(`*`(`^`(a, 2), `*`(`^`(b, 2))), `*`(2, `*`(a, `*`(`^`(b, 2)))), `*`(`^`(b, 2)))), `*`(`^`(Pi, `/`(1, 2...
(7)
 

> Digits := 20; 1; evalf(subs([a = 0, b = 1, x = 1], resu)); 1; evalf(subs([a = 0, b = 5, x = 1], resu)); 1; evalf(subs([a = 0, b = 10, x = 1], resu)); 1; evalf(subs([a = 0, b = 15, x = 1], resu)); 1; e...
Digits := 20; 1; evalf(subs([a = 0, b = 1, x = 1], resu)); 1; evalf(subs([a = 0, b = 5, x = 1], resu)); 1; evalf(subs([a = 0, b = 10, x = 1], resu)); 1; evalf(subs([a = 0, b = 15, x = 1], resu)); 1; e...
Digits := 20; 1; evalf(subs([a = 0, b = 1, x = 1], resu)); 1; evalf(subs([a = 0, b = 5, x = 1], resu)); 1; evalf(subs([a = 0, b = 10, x = 1], resu)); 1; evalf(subs([a = 0, b = 15, x = 1], resu)); 1; e...
 

 

 

 

 

 

 

20
.42759329552912016602
.99999999992010820755
1.0000000000000000000
1.0000000000000000000
1.0000000000000000000
1.0000000000000000000 (8)
 

We see that one needs to play with the value of parameter "b" in order to obtained the best precision. 

> Digits := 10; 1; resu2 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
Digits := 10; 1; resu2 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
 

 

10
proc (x_rosenbrock) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error (9)
 

> resu2(parameters = [b = 1., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 5., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 10., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 15., a = 0...
resu2(parameters = [b = 1., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 5., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 10., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 15., a = 0...
resu2(parameters = [b = 1., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 5., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 10., a = 0.]); 1; resu2(1.); 1; resu2(parameters = [b = 15., a = 0...
 

 

 

 

 

 

 

 

 

 

 

 

[a = 0., b = 1.]
[y = 1., Z(y) = HFloat(7.707120112899687e-8), Z1(y) = HFloat(0.4275932988977108)]
[a = 0., b = 5.]
[y = 1., Z(y) = HFloat(-3.063579152425269e-10), Z1(y) = HFloat(1.0000000026453448)]
[a = 0., b = 10.]
[y = 1., Z(y) = HFloat(6.118405317357082e-9), Z1(y) = HFloat(1.000000006523538)]
[a = 0., b = 15.]
[y = 1., Z(y) = HFloat(6.8122416690601316e-9), Z1(y) = HFloat(1.0000000070661805)]
[a = 0., b = 20.]
[y = 1., Z(y) = HFloat(6.542206472095037e-9), Z1(y) = HFloat(1.0000000066936452)]
[a = 0., b = 25.]
[y = 1., Z(y) = HFloat(7.0008734049088085e-9), Z1(y) = HFloat(1.000000006903479)] (10)
 

The situation remains unchanged, even with the stiff option and a great number of digits. 

> Digits := 30; 1; resu3 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
Digits := 30; 1; resu3 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
Digits := 30; 1; resu3 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
Digits := 30; 1; resu3 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
Digits := 30; 1; resu3 := dsolve([diff(Z(y), y) = diff(`*`(`+`(erf(`*`(`+`(y, `-`(a)), `*`(b))), 1), `/`(1, 2)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [Z(y), Z1(y)], numeric, param...
 

 

 

 

 

 

 

 

 

 

 

 

 

 

30
proc (x_rosenbrock) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error
[a = 0., b = 1.]
[y = 1., Z(y) = 0.77071199756160432299961122e-7, Z1(y) = .427593298897711602227789841677]
[a = 0., b = 5.]
[y = 1., Z(y) = -0.306357317549821454599000978430e-9, Z1(y) = 1.00000000264534810273850931227]
[a = 0., b = 10.]
[y = 1., Z(y) = 0.611840460259303704725888191778e-8, Z1(y) = 1.00000000652353924881966008655]
[a = 0., b = 15.]
[y = 1., Z(y) = 0.681223300593295428677411939526e-8, Z1(y) = 1.00000000706617521022333591176]
[a = 0., b = 20.]
[y = 1., Z(y) = 0.654220273959467641614373984506e-8, Z1(y) = 1.00000000669364210921004599322]
[a = 0., b = 25.]
[y = 1., Z(y) = 0.700088728875248589962619058857e-8, Z1(y) = 1.00000000690349332906039390659] (11)
 

We may observe the same behaviour with "arctan". 

> Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 10; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10
proc (x_rosenbrock) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error
[a = 0., b = 1.]
[y = 1., Z(y) = HFloat(-1.5245301486120025e-8), Z1(y) = HFloat(0.1816901153099545)]
[a = 0., b = 10.]
[y = 1., Z(y) = HFloat(-2.460041122392137e-8), Z1(y) = HFloat(0.8735173022884068)]
[a = 0., b = 100.]
[y = 1., Z(y) = HFloat(-3.085020925671462e-8), Z1(y) = HFloat(0.9872684529312092)]
[a = 0., b = 1000.]
[y = 1., Z(y) = HFloat(2.8364723288904784e-8), Z1(y) = HFloat(0.998726779043347)]
[a = 0., b = 10000.]
[y = 1., Z(y) = HFloat(-2.4139345964587916e-7), Z1(y) = HFloat(0.9998724244008227)]
[a = 0., b = 100000.]
[y = 1., Z(y) = HFloat(-3.6387096236949705e-6), Z1(y) = HFloat(0.9999836423651798)]
[a = 0., b = 1000000.]
[y = 1., Z(y) = HFloat(4.808290045290797e-6), Z1(y) = HFloat(1.0000035443669102)]
[a = 0., b = 10000000.]
[y = 1., Z(y) = HFloat(-3.279999071460797e-4), Z1(y) = HFloat(0.9996718756692161)]
[a = 0., b = 100000000.]
[y = 1., Z(y) = HFloat(-0.0024588343981494626), Z1(y) = HFloat(0.9975411540917314)]
[a = 0., b = 1000000000.]
[y = 1., Z(y) = HFloat(-0.04425362101111301), Z1(y) = HFloat(0.95574637761905)] (12)
 

> Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
Digits := 30; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], [...
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30
proc (x_rosenbrock) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error
[a = 0., b = 1.]
[y = 1., Z(y) = -0.15245301448503933195556427e-7, Z1(y) = .181690115309954389644926674467]
[a = 0., b = 10.]
[y = 1., Z(y) = -0.24600408807241527176729426334e-7, Z1(y) = .873517302288407692584220154609]
[a = 0., b = 100.]
[y = 1., Z(y) = -0.308502133124344907419083812e-7, Z1(y) = .987268452931203875115777812640]
[a = 0., b = 1000.]
[y = 1., Z(y) = 0.2836475094709602303435591685e-7, Z1(y) = .998726779043371895864235525693]
[a = 0., b = 10000.]
[y = 1., Z(y) = -0.241394928954764151618836507080e-6, Z1(y) = .999872424399353124789816947009]
[a = 0., b = 100000.]
[y = 1., Z(y) = -0.363868198771966774819400989911e-5, Z1(y) = .999983642392815517759802800082]
[a = 0., b = 1000000.]
[y = 1., Z(y) = 0.480825113717448439195606867696e-5, Z1(y) = 1.00000354432799753592827610560]
[a = 0., b = 10000000.]
[y = 1., Z(y) = -0.328003133546162168967901529826e-3, Z1(y) = .999671872442812120176265886944]
[a = 0., b = 100000000.]
[y = 1., Z(y) = -0.245881039555435603059004806481e-2, Z1(y) = .997541178094320977793014094960]
[a = 0., b = 1000000000.]
[y = 1., Z(y) = -0.442536838492834757756285778904e-1, Z1(y) = .955746314780879979378933291837] (13)
 

> Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
Digits := 100; 1; resu4 := dsolve([diff(Z(y), y) = diff(`/`(`*`(`+`(arctan(`*`(`+`(y, `-`(a)), `*`(b))), `*`(`/`(1, 2), `*`(Pi)))), `*`(Pi)), a, a), diff(Z1(y), y) = Z(y), Z(-1.) = 0., Z1(-1.) = 0.], ...
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100
proc (x_rosenbrock) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error
[a = 0., b = 1.]
[y = 1., Z(y) = -0.152453014485039331955525744442592522368664496302969941176559170949109994075113939890140771464762e-7, Z1(y) = .18169011530995438964492667446579384538850691244020990980185250033947596...
[y = 1., Z(y) = -0.152453014485039331955525744442592522368664496302969941176559170949109994075113939890140771464762e-7, Z1(y) = .18169011530995438964492667446579384538850691244020990980185250033947596...
[y = 1., Z(y) = -0.152453014485039331955525744442592522368664496302969941176559170949109994075113939890140771464762e-7, Z1(y) = .18169011530995438964492667446579384538850691244020990980185250033947596...
[y = 1., Z(y) = -0.152453014485039331955525744442592522368664496302969941176559170949109994075113939890140771464762e-7, Z1(y) = .18169011530995438964492667446579384538850691244020990980185250033947596...
[y = 1., Z(y) = -0.152453014485039331955525744442592522368664496302969941176559170949109994075113939890140771464762e-7, Z1(y) = .18169011530995438964492667446579384538850691244020990980185250033947596...
[a = 0., b = 10.]
[y = 1., Z(y) = -0.246004088072415271767197959418050686151884661604457962249479601932930816356564716685973032410212302e-7, Z1(y) = .87351730228840769258422015461848430811169915146358711137665612944622...
[y = 1., Z(y) = -0.246004088072415271767197959418050686151884661604457962249479601932930816356564716685973032410212302e-7, Z1(y) = .87351730228840769258422015461848430811169915146358711137665612944622...
[y = 1., Z(y) = -0.246004088072415271767197959418050686151884661604457962249479601932930816356564716685973032410212302e-7, Z1(y) = .87351730228840769258422015461848430811169915146358711137665612944622...
[y = 1., Z(y) = -0.246004088072415271767197959418050686151884661604457962249479601932930816356564716685973032410212302e-7, Z1(y) = .87351730228840769258422015461848430811169915146358711137665612944622...
[y = 1., Z(y) = -0.246004088072415271767197959418050686151884661604457962249479601932930816356564716685973032410212302e-7, Z1(y) = .87351730228840769258422015461848430811169915146358711137665612944622...
[a = 0., b = 100.]
[y = 1., Z(y) = -0.3085021331243449074175283459883630519614332065466939721693163874088388207003513800367875065475044e-7, Z1(y) = .9872684529312038751157778127734223439523476997829358360716071118429992...
[y = 1., Z(y) = -0.3085021331243449074175283459883630519614332065466939721693163874088388207003513800367875065475044e-7, Z1(y) = .9872684529312038751157778127734223439523476997829358360716071118429992...
[y = 1., Z(y) = -0.3085021331243449074175283459883630519614332065466939721693163874088388207003513800367875065475044e-7, Z1(y) = .9872684529312038751157778127734223439523476997829358360716071118429992...
[y = 1., Z(y) = -0.3085021331243449074175283459883630519614332065466939721693163874088388207003513800367875065475044e-7, Z1(y) = .9872684529312038751157778127734223439523476997829358360716071118429992...
[y = 1., Z(y) = -0.3085021331243449074175283459883630519614332065466939721693163874088388207003513800367875065475044e-7, Z1(y) = .9872684529312038751157778127734223439523476997829358360716071118429992...
[a = 0., b = 1000.]
[y = 1., Z(y) = 0.28364750947096023038143597117852365195572128129838873159727536188419072360324057313164410864116752e-7, Z1(y) = .9987267790433718958642355294938834378650316513649598298871259623380905...
[y = 1., Z(y) = 0.28364750947096023038143597117852365195572128129838873159727536188419072360324057313164410864116752e-7, Z1(y) = .9987267790433718958642355294938834378650316513649598298871259623380905...
[y = 1., Z(y) = 0.28364750947096023038143597117852365195572128129838873159727536188419072360324057313164410864116752e-7, Z1(y) = .9987267790433718958642355294938834378650316513649598298871259623380905...
[y = 1., Z(y) = 0.28364750947096023038143597117852365195572128129838873159727536188419072360324057313164410864116752e-7, Z1(y) = .9987267790433718958642355294938834378650316513649598298871259623380905...
[y = 1., Z(y) = 0.28364750947096023038143597117852365195572128129838873159727536188419072360324057313164410864116752e-7, Z1(y) = .9987267790433718958642355294938834378650316513649598298871259623380905...
[a = 0., b = 10000.]
[y = 1., Z(y) = -0.2413949289547641517440596692230176293836460763620385343805441318024102546464287440317064129899090051e-6, Z1(y) = .9998724243993531247898168217854886966167822506034773174829488420079...
[y = 1., Z(y) = -0.2413949289547641517440596692230176293836460763620385343805441318024102546464287440317064129899090051e-6, Z1(y) = .9998724243993531247898168217854886966167822506034773174829488420079...
[y = 1., Z(y) = -0.2413949289547641517440596692230176293836460763620385343805441318024102546464287440317064129899090051e-6, Z1(y) = .9998724243993531247898168217854886966167822506034773174829488420079...
[y = 1., Z(y) = -0.2413949289547641517440596692230176293836460763620385343805441318024102546464287440317064129899090051e-6, Z1(y) = .9998724243993531247898168217854886966167822506034773174829488420079...
[y = 1., Z(y) = -0.2413949289547641517440596692230176293836460763620385343805441318024102546464287440317064129899090051e-6, Z1(y) = .9998724243993531247898168217854886966167822506034773174829488420079...
[a = 0., b = 100000.]
[y = 1., Z(y) = -0.3638681987719667748700056249481157534802455548578699814263945464805293661684041478548818241990999276e-5, Z1(y) = .9999836423928155177598022940355202553276111398827914781301435864563...
[y = 1., Z(y) = -0.3638681987719667748700056249481157534802455548578699814263945464805293661684041478548818241990999276e-5, Z1(y) = .9999836423928155177598022940355202553276111398827914781301435864563...
[y = 1., Z(y) = -0.3638681987719667748700056249481157534802455548578699814263945464805293661684041478548818241990999276e-5, Z1(y) = .9999836423928155177598022940355202553276111398827914781301435864563...
[y = 1., Z(y) = -0.3638681987719667748700056249481157534802455548578699814263945464805293661684041478548818241990999276e-5, Z1(y) = .9999836423928155177598022940355202553276111398827914781301435864563...
[y = 1., Z(y) = -0.3638681987719667748700056249481157534802455548578699814263945464805293661684041478548818241990999276e-5, Z1(y) = .9999836423928155177598022940355202553276111398827914781301435864563...
[a = 0., b = 1000000.]
[y = 1., Z(y) = 0.4808251137174484395205340175562944288516968033412324471806677066776191017425701298353203349832066664e-5, Z1(y) = 1.0000035443279975359282793548700143868094579189826697854666123050750...
[y = 1., Z(y) = 0.4808251137174484395205340175562944288516968033412324471806677066776191017425701298353203349832066664e-5, Z1(y) = 1.0000035443279975359282793548700143868094579189826697854666123050750...
[y = 1., Z(y) = 0.4808251137174484395205340175562944288516968033412324471806677066776191017425701298353203349832066664e-5, Z1(y) = 1.0000035443279975359282793548700143868094579189826697854666123050750...
[y = 1., Z(y) = 0.4808251137174484395205340175562944288516968033412324471806677066776191017425701298353203349832066664e-5, Z1(y) = 1.0000035443279975359282793548700143868094579189826697854666123050750...
[y = 1., Z(y) = 0.4808251137174484395205340175562944288516968033412324471806677066776191017425701298353203349832066664e-5, Z1(y) = 1.0000035443279975359282793548700143868094579189826697854666123050750...
[a = 0., b = 10000000.]
[y = 1., Z(y) = -0.3280031335461621689576602446266454672855672392550282608991971925424923814021643718589767059055541159e-3, Z1(y) = .9996718724428121201762761282478169367183992869879825648339097212658...
[y = 1., Z(y) = -0.3280031335461621689576602446266454672855672392550282608991971925424923814021643718589767059055541159e-3, Z1(y) = .9996718724428121201762761282478169367183992869879825648339097212658...
[y = 1., Z(y) = -0.3280031335461621689576602446266454672855672392550282608991971925424923814021643718589767059055541159e-3, Z1(y) = .9996718724428121201762761282478169367183992869879825648339097212658...
[y = 1., Z(y) = -0.3280031335461621689576602446266454672855672392550282608991971925424923814021643718589767059055541159e-3, Z1(y) = .9996718724428121201762761282478169367183992869879825648339097212658...
[y = 1., Z(y) = -0.3280031335461621689576602446266454672855672392550282608991971925424923814021643718589767059055541159e-3, Z1(y) = .9996718724428121201762761282478169367183992869879825648339097212658...
[a = 0., b = 100000000.]
[y = 1., Z(y) = -0.2458810395554356030690903999946806349170048099011234128656952365132956765086047238449573199687723549e-2, Z1(y) = .9975411780943209777929132390551953867206901636233821928672174616283...
[y = 1., Z(y) = -0.2458810395554356030690903999946806349170048099011234128656952365132956765086047238449573199687723549e-2, Z1(y) = .9975411780943209777929132390551953867206901636233821928672174616283...
[y = 1., Z(y) = -0.2458810395554356030690903999946806349170048099011234128656952365132956765086047238449573199687723549e-2, Z1(y) = .9975411780943209777929132390551953867206901636233821928672174616283...
[y = 1., Z(y) = -0.2458810395554356030690903999946806349170048099011234128656952365132956765086047238449573199687723549e-2, Z1(y) = .9975411780943209777929132390551953867206901636233821928672174616283...
[y = 1., Z(y) = -0.2458810395554356030690903999946806349170048099011234128656952365132956765086047238449573199687723549e-2, Z1(y) = .9975411780943209777929132390551953867206901636233821928672174616283...
[a = 0., b = 1000000000.]
[y = 1., Z(y) = -0.4425368384928347578102660848235505020578130270602572767163764925510463168039819676794112630358366147e-1, Z1(y) = .9557463147808799793735352612647628798192751081516828479873352991040...
[y = 1., Z(y) = -0.4425368384928347578102660848235505020578130270602572767163764925510463168039819676794112630358366147e-1, Z1(y) = .9557463147808799793735352612647628798192751081516828479873352991040...
[y = 1., Z(y) = -0.4425368384928347578102660848235505020578130270602572767163764925510463168039819676794112630358366147e-1, Z1(y) = .9557463147808799793735352612647628798192751081516828479873352991040...
[y = 1., Z(y) = -0.4425368384928347578102660848235505020578130270602572767163764925510463168039819676794112630358366147e-1, Z1(y) = .9557463147808799793735352612647628798192751081516828479873352991040...
[y = 1., Z(y) = -0.4425368384928347578102660848235505020578130270602572767163764925510463168039819676794112630358366147e-1, Z1(y) = .9557463147808799793735352612647628798192751081516828479873352991040...
(14)
 

>