
[CSE301 / Lecture 2]
Higher-order functions and type classes

Noam Zeilberger

Ecole Polytechnique

14 September 2022

1 / 42

What are is a higher-order function?

A function that takes one or more functions as input.

Main motivation: expressing the common denominator between
a collection of first-order functions, thus promoting code reuse!

Learning tip: HO functions may be hard to grasp at first, but will
eventually help in “seeing the forest for the trees”.

2 / 42

First example: abstracting case-analysis

Recall that given f :: a → c and g :: b → c, we can define

h :: Either a b → c
h (Left x) = f x
h (Right y) = g y

In other words, we can define h by case-analysis.

For example:

asInt :: Either Bool Int → Int
asInt (Left b) = if b then 1 else 0
asInt (Right n) = n
isBool :: Either Bool Int → Bool
isBool (Left b) = True
isBool (Right n) = False

3 / 42

First example: abstracting case-analysis

The Prelude defines a higher-order function that “internalizes” the
principle of case-analysis over sum types:

either :: (a → c) → (b → c) → Either a b → c
either f g (Left x) = f x
either f g (Right y) = g y

Here is how we can redefine asInt and isBool using either (and λ):

asInt = either (\b → if b then 1 else 0) (\n → n)
isBool = either (\b → True) (\n → False)

Whereas before we could spot that the two functions were
instances of a simple common “design pattern”, now they are
literally two applications of the same higher-order function.

4 / 42

First example: abstracting case-analysis

Here again:

asInt = either (\b → if b then 1 else 0) (\n → n)
isBool = either (\b → True) (\n → False)

Observe we only partially applied either . Alternatively:

asInt v = either (\b → if b then 1 else 0) (\n → n) v
isBool v = either (\b → True) (\n → False) v

but these two versions are completely equivalent.

(They are said to be “η-equivalent”.)

5 / 42

First example: abstracting case-analysis

Finally, recall arrow associates to the right by default:

either :: (a → c) → ((b → c) → (Either a b → c))

The type of either looks a lot like

(A ⊃ C) ⊃ ([B ⊃ C] ⊃ [(A ∨ B) ⊃ C])

which you can verify is a tautology. (This is a recurring theme!)

6 / 42

Second example: mapping over a list

Consider the following first-order functions on lists...

7 / 42

Second example: mapping over a list

(Add one to every element in a list of integers.)

mapAddOne :: [Integer] → [Integer]
mapAddOne [] = []
mapAddOne (x : xs) = (1 + x) : mapAddOne xs

Example: mapAddOne [1 . . 5] = [2, 3, 4, 5, 6]

8 / 42

Second example: mapping over a list

(Square every element in a list of integers.)

mapSquare :: [Integer] → [Integer]
mapSquare [] = []
mapSquare (x : xs) = (x ∗ x) : mapSquare xs

Example: mapSquare [1 . . 5] = [1, 4, 9, 16, 25]

9 / 42

Second example: mapping over a list

(Compute the length of each list in a list of lists.)

mapLength :: [[a]] → [Int]
mapLength [] = []
mapLength (x : xs) = length x : mapLength xs

Example: mapLength ["hello", "world!"] = [5, 6]‘

10 / 42

Second example: mapping over a list

GCD = “apply some transformation to every element of a list”

We can internalize this as a higher-order function:

map :: (a → b) → [a] → [b]
map f [] = []
map f (x : xs) = (f x) : map f xs

For example:

mapAddOne = map (1+)
mapSquare = map (\n → n ∗ n)
mapLength = map length

11 / 42

Some useful functions on functions

The “currying” and “uncurrying” principles:

curry :: ((a, b) → c) → (a → b → c)
curry f x y = f (x , y)
uncurry :: (a → b → c) → ((a, b) → c)
uncurry g (x , y) = g x y

Or equivalently:

curry f = \x → \y → f (x , y)
uncurry g = \(x , y) → g x y

Example: map (uncurry (+)) [(0, 1), (2, 3), (4, 5)] = [1, 5, 9]

Logically: (A ∧ B) ⊃ C ⇐⇒ A ⊃ (B ⊃ C).

12 / 42

Some useful functions on functions

The principle of sequential composition:

(◦) :: (b → c) → (a → b) → (a → c)
(g ◦ f) x = g (f x)

Example: map ((+1) ◦ (∗2)) [0 . . 4] = [1, 3, 5, 7, 9]

Logically: transitivity of implication.

13 / 42

Some useful functions on functions

The principle of exchange:

flip :: (a → b → c) → (b → a → c)
flip f x y = f y x

The principle of weakening:

const :: b → (a → b)
const x y = x

The principle of contraction:

dupl :: (a → a → b) → (a → b)
dupl f x = f x x

14 / 42

More higher-order functions on lists

The Haskell Prelude and Standard Library define a number of HO
functions that capture common ways of manipulating lists...

15 / 42

More higher-order functions on lists

filter :: (a → Bool) → [a] → [a]
filter p [] = []
filter p (x : xs)

| p x = x : filter p xs
| otherwise = filter p xs

Examples:

> filter (>3) [1 . . 5]
[4, 5]
> filter Data.Char .isUpper "Glasgow Haskell Compiler"
"GHC"

16 / 42

More higher-order functions on lists

all , any :: (a → Bool) → [a] → Bool
all p [] = True
all p (x : xs) = p x && all p xs
any p [] = False
any p (x : xs) = p x || any p xs

Examples: all (>3) [1 . . 5] = False, any (>3) [1 . . 5] = True.

17 / 42

More higher-order functions on lists

takeWhile, dropWhile :: (a → Bool) → [a] → [a]
takeWhile p [] = []
takeWhile p (x : xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile p [] = []
dropWhile p (x : xs)

| p x = dropWhile p xs
| otherwise = x : xs

Examples: takeWhile (>3) [1 . . 5] = [],
takeWhile (<3) [1 . . 5] = [1, 2],
dropWhile (<3) [1 . . 5] = [3, 4, 5].

18 / 42

More higher-order functions on lists

concatMap :: (a → [b]) → [a] → [b]
concatMap f [] = []
concatMap f (x : xs) = f x ++ concatMap f xs

Examples:

> concatMap (\x → [x]) [1 . . 5]
[1, 2, 3, 4, 5]
> concatMap (\x → if x ‘mod ‘ 2 ≡ 1 then [x] else []) [1 . . 5]
[1, 3, 5]
> concatMap (\x → concatMap (\y → [x . . y]) [1 . . 3]) [1 . . 3]
[1, 1, 2, 1, 2, 3, 2, 2, 3, 3]

Note concatMap f = concat ◦ map f .

19 / 42

foldr : the Swiss army knife of list functions

Remarkably, all of the preceding higher-order list functions, and
many other functions besides, can be defined as instances of a
single higher-order function!

20 / 42

foldr : the Swiss army knife of list functions

Suppose want to write a function [a] → b inductively over lists.

We provide a “base case” v :: b.

We provide an “inductive step” f :: a → b → b.

Putting these together, we get a recursive definition:

h :: [a] → b
h [] = v
h (x :: xs) = f x (h xs)

21 / 42

foldr : the Swiss army knife of list functions

Since this schema is completely generic in the “base case” and the
“inductive step”, we can internalize it as a higher-order function:

foldr :: (a → b → b) → b → [a] → b
foldr f v [] = v
foldr f v (x : xs) = f x (foldr f v xs)

Here are some examples:

filter p = foldr (\x xs → if p x then x : xs else xs) []
all p = foldr (\x b → p x && b) True
takeWhile p = foldr (\x xs → if p x then x : xs else []) []
concatMap f = foldr (\x ys → f x ++ ys) []

And let’s look at some more...

22 / 42

foldr : the Swiss army knife of list functions

sum :: Num a ⇒ [a] → a
sum [] = 0
sum (x : xs) = x + sum xs

may be summarized as:

sum = foldr (+) 0

23 / 42

foldr : the Swiss army knife of list functions

product :: Num a ⇒ [a] → a
product [] = 1
product (x : xs) = x ∗ product xs

may be summarized as:

product = foldr (∗) 1

24 / 42

foldr : the Swiss army knife of list functions

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

may be summarized as:

length = foldr (\x n → 1 + n) 0 = foldr (const (1+)) 0

25 / 42

foldr : the Swiss army knife of list functions

concat :: [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

may be summarized as:

concat = foldr (++) []

26 / 42

foldr : the Swiss army knife of list functions

copy :: [a] → [a]
copy [] = []
copy (x : xs) = x : copy xs

may be summarized as:

copy = foldr (:) []

27 / 42

foldr : the Swiss army knife of list functions

(a somewhat more subtle example:)

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

may be summarized as:

(++) = foldr (\x g → (x :) ◦ g) id

28 / 42

Aside: folding from the left

foldr (+) 0 [1, 2, 3, 4, 5]
= 1 + foldr (+) 0 [2, 3, 4, 5]
= 1 + (2 + foldr (+) 0 [3, 4, 5]
= 1 + (2 + (3 + foldr (+) 0 [4, 5]
= 1 + (2 + (3 + (4 + foldr (+) 0 [5]
= 1 + (2 + (3 + (4 + (5 + foldr (+) 0 []))))
= 1 + (2 + (3 + (4 + (5 + 0))))
= 1 + (2 + (3 + (4 + 5)))
= 1 + (2 + (3 + 9))
= 1 + (2 + 12)
= 1 + 14
= 15

Observe that additions are performed right-to-left.

29 / 42

Aside: folding from the left

Sometimes we want to go left-to-right:

foldl :: (b → a → b) → b → [a] → b
foldl f v [] = v
foldl f v (x : xs) = foldl f (f v x) xs

Example:

foldl (+) 0 [1, 2, 3, 4, 5]
= foldl (+) 1 [2, 3, 4, 5]
= foldl (+) 3 [3, 4, 5]
= foldl (+) 6 [4, 5]
= foldl (+) 10 [5]
= foldl (+) 15 []
= 15

(Q: does this remind you of something from Lecture 1?)

30 / 42

Higher-order functions over trees

Recall our data type of binary trees with labelled nodes:

data BinTree a = Leaf | Node a (BinTree a) (BinTree a)
deriving (Show , Eq)

It supports a natural analogue of the map function on lists:

mapBT :: (a → b) → BinTree a → BinTree b
mapBT f Leaf = Leaf
mapBT f (Node x tL tR) = Node (f x)

(mapBT f tL) (mapBT f tR)

31 / 42

Higher-order functions over trees

5

42

3

4

31

2

32 / 42

Higher-order functions over trees

It also supports a natural analogue of foldr :

foldBT :: b → (a → b → b → b) → BinTree a → b
foldBT v f Leaf = v
foldBT v f (Node x tL tR) = f x

(foldBT v f tL) (foldBT v f tR)

For example:

nodes = foldBT 0 (\x m n → 1 + m + n)
leaves = foldBT 1 (\x m n → m + n)
height = foldBT 0 (\x m n → 1 + max m n)
mirror = foldBT Leaf (\x tL′ tR ′ → Node x tR ′ tL′)

33 / 42

Type classes: what are they?

By now we’ve seen several examples of polymorphic functions with
type class constraints, e.g.:

sort :: Ord a ⇒ [a] → [a]
lookup :: Eq a ⇒ a → [(a, b)] → Maybe b
sum, product :: Num a ⇒ [a] → a

Intuitively, these constraints express minimal requirements on the
otherwise generic type a needed to define these functions.

34 / 42

Type classes: what are they?

Formally, a type class is defined by specifying the type signatures
of operations, possibly together with default implementations of
some operations in terms of others. For example:

class Eq a where
(≡), (̸≡) :: a → a → Bool
x ̸≡ y = not (x ≡ y)
x ≡ y = not (x ̸≡ y)

35 / 42

Type class instances

We show the constraint is satisfied by providing an instance:

instance Eq Bool where
x ≡ y = if x then y else not y

Sometimes need hereditary constraints to define instances:

instance Eq a ⇒ Eq [a] where
[] ≡ [] = True
(x : xs) ≡ (y : ys) = x ≡ y && xs ≡ ys

≡ = False

36 / 42

Class hierarchy
Possible for one type class to inherit from another, e.g.:1

class Eq a ⇒ Ord a where
compare :: a → a → Ordering
(<), (⩽), (>), (⩾) :: a → a → Bool
max , min :: a → a → a
compare x y = if x ≡ y then EQ

else if x ⩽ y then LT
else GT

x < y = case compare x y of {LT → True; → False}
x ⩽ y = case compare x y of {GT → False; → True}
x > y = case compare x y of {GT → True; → False}
x ⩾ y = case compare x y of {LT → False; → True}
max x y = if x ⩽ y then y else x
min x y = if x ⩽ y then x else y

1This looks complicated, but basically you only need to implement (⩽) to
define an Ord instance, assuming you already have Eq.

37 / 42

Laws

It is often implicit that operations should obey certain laws.

For example, (≡) should be reflexive, symmetric, and transitive.

Similarly, (⩽) should be a total ordering.

These expectations may be described in the documentation of a
type class, but are not enforced by the Haskell language.2

2Although they can be enforced in dependently typed languages!
38 / 42

Type classes from higher-order functions

Type classes are a cool feature of Haskell, but in a certain sense
they may be seen as “just” a convenient mechanism for defining
higher-order functions, since a constraint may always be replaced
by the types of the operations in (a minimal definition of) the
corresponding type class...

39 / 42

Type classes from higher-order functions

Replace sort :: Ord a ⇒ [a] → [a] by

sortHO :: (a → a → Bool) → [a] → [a]

Replace lookup :: Eq a ⇒ a → [(a, b)] → Maybe b by

lookupHO :: (a → a → Bool) → a → [(a, b)] → Maybe b

and so on.

Whenever we would call a function with constraints, we instead
call a HO function while providing one or more extra arguments.

40 / 42

Automatic type class resolution

Drawback of this translation: every call to a function with
constraints has to pass potentially many extra arguments!

Type classes are useful because these “semantically implicit”
arguments are automatically inferred by the type checker.

> import Data.List
> sort [3, 1, 4, 1, 5, 9]
[1, 1, 3, 4, 5, 9]
> sort ["my", "dog", "has", "fleas"]
["dog", "fleas", "has", "my"]

Unfortunately, it is only possible to define a single instance of a
type class for a given type, although we can get around this with
the newtype mechanism...

41 / 42

newtype

Behaves similarly to a data definition but only allowed to have a
single constructor with a single argument. The purpose is to
introduce an isomorphic copy of another type.

newtype Sum a = Sum a
newtype Product a = Product a
instance Num a ⇒ Monoid (Sum a) where

mempty = Sum 0
mappend (Sum x) (Sum y) = Sum (x + y)

instance Num a ⇒ Monoid (Product a) where
mempty = Product 1
mappend (Product x) (Product y) = Product (x ∗ y)

42 / 42

