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Lambda calculus: linearity and related notions

a term is linear if every (free or bound) var is used exactly once
I linear: λx .λy .xy
I non-linear: λx .λy .y , λx .λy .x(xy)

a term is planar if variables are used in the order they’re bound
I planar: λx .λy .λz .x(yz)
I non-planar: λx .λy .λz .(xz)y

a term is unit-free if it has no closed subterms
I unit-free: x ` λy .yx
I not unit-free: x ` x(λy .y)
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What are “maps”?

a graph + embedding into an oriented surface (e.g., the sphere)

or equivalently...

a permutation representation of Γ = 〈v , e, f | e2 = vef = 1〉

•

•
• •

•

•

v = (1 2 3)(4 5 6)(7 8 9)(10 11 12 13)(14 15 16)(17 18 19 20)
e = (1 18)(2 16)(3 4)(5 15)(6 7)(8 11)(9 10)(12 14)(13 17)(19 20)
f = (1 17 12 16)(2 15 4)(3 6 9 13 20 18)(5 14 11 7)(8 10)(19)
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What are “maps”?

close connections to knot theory via the medial map construction1

←→

1cf. Louis Kauffman’s “A Tutte polynomial for signed graphs”, Discrete
Appl. Math. 25 (1989), 105-127
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What are “maps”?

Bill Tutte pioneered the enumerative study of maps.
I A census of planar triangulations. Can. J. Math. 14:21–38, 1962
I A census of Hamiltonian polygons. Can. J. Math. 14:402–417, 1962
I A census of planar maps. Can. J. Math. 15:249–271, 1963
I On the enumeration of planar maps. Bull. AMS 74:64–74, 1968
I On the enumeration of four-colored maps. SIAM J. Appl. Math.

17:454–460, 1969
One of Tutte’s early insights was to consider rooted maps.

•
•

•

•

•

•

•

•
•
•

• •
(a rooted trivalent map)
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Some surprising enumerative connections

family of lambda terms family of rooted maps OEIS
linear terms1,4 trivalent maps A062980
planar terms4 planar trivalent maps A002005
unit-free linear4 bridgeless trivalent A267827
unit-free planar4 bridgeless planar trivalent A000309
normal linear terms/∼3 maps A000698
normal planar terms2 planar maps A000168
normal unit-free linear/∼5 bridgeless maps A000699
normal unit-free planar6 bridgeless planar A000260

1. Bodini, Gardy, Jacquot, “Asymptotics and...”, TCS 502, 2013.
2. Z, Giorgetti, “A correspondence between...”, LMCS 11(3:22), 2015.
3. Z, “Counting isomorphism classes...”, arXiv:1509.07596, 2015.
4. Z, “Linear lambda terms as invariants...”, JFP 26(e21), 2016.
5. Courtiel, Yeats, Z, “Connected chord...”, arXiv:1611.04611, 2017.
6. Z, “A sequent calculus for a semi-associative law”, FSCD 2017.
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String diagrams for linear lambda terms

Linear lambda terms (with n free vars) may be modelled as (n-ary)
endomorphisms of a reflexive object in a symmetric monoidal
closed bicategory, i.e., an object U equipped with an adjunction
@ a λ to its space of endomorphisms U ( U.

Interpreting this signature in the graphical language of compact
closed bicategories (U ( U ∼= U ⊗ U∗) recovers a familiar
diagrammatic notation for lambda terms...

7 / 24



String diagrams for linear lambda terms

@
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M(N) N
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xM
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@
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String diagrams for linear lambda terms
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Linear lambda terms as invariants of rooted trivalent maps

λ

λ

@

@

λ
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xλy.λz.x(yz)

y

z

yz 7→

•

•

•

•

•
•

Forgetting edge orientations/vertex states yields a rooted map.

...but not every orientation gives a valid lambda term!

In fact, every rooted trivalent map is the underlying map of a
unique linear lambda term. (Effectively, the term can be seen as a
complete topological invariant of its underlying trivalent map.)
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Typing as edge-coloring

So what about types?

Seen through the lens of graph theory, typing is naturally posed as
an edge-coloring problem: assign each edge (= subterm) a color
(= type) so as to satisfy certain constraints at the vertices (=
applications and abstractions).

To make this analogy precise, let’s first meet a friendly algebraic
gadget...
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Introducing imploids

An imploid is a preorder (P,≤) equipped with an operation

A2 ≤ A1 B1 ≤ B2
A1 ( B1 ≤ A2 ( B2 (1)

and an element I ∈ P, satisfying laws of composition, identity, unit:

B ( C ≤ (A ( B) ( (A ( C) (2)

I ≤ A ( A (3)

I ( A ≤ A (4)

In a non-unital imploid we only ask for (1) and (2). An imploid is
said to be commutative if it moreover satisfies DNI:

A ≤ (A ( B) ( B (5)
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Introducing imploids

Any group provides an example of an imploid, by taking the
discrete preorder and A ( B def= B • A−1.

So does any (skew) monoid, by taking its downwards closed subsets
ordered by inclusion and A ( B def= { x | ∀y . y ∈ A⇒ x • y ∈ B }.

Conversely, an imploid is just a skew-closed preorder:
I Ross Street. Skew-closed categories. J. Pure and Appl. Alg.,

217(6):973–988, 2013.
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Imploid-typing

Let M be a linear lambda term, and P = (P,≤,(, I) a
commutative imploid. A P-typing of M is an assignment
Subterms(M)→ P satisfying the constraints

@

C ≤ A ( B

B A

λ

A ( B ≤ C

AB

at every application and abstraction.

If M is planar we can drop assumption that P is commutative.

If M is unit-free we can drop assumption that P is unital.
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Imploid-typings and G-flows

For P = G a (commutative) group, a P-typing of M is the same
thing as a G-flow2 on its underlying trivalent graph |M|.

@

C = B − A

B A

λ

B − A = C

AB

(sum of outputs = sum of inputs)

For example, a Z2-typing is the same thing as an element of the
cycle space of |M|...

2W. T. Tutte, A contribution to the theory of chromatic polynomials. Can.
J. Math. 6:80–91, 1954.
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Imploid-typings and G-flows
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λ
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@

((α ( β) ( γ) ( ((α ( β) ( γ)

(α ( β) ( γ
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A Free(3)-typing
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Imploid-typings and G-flows

The typing problem for linear lambda terms is usually considered
“trivial”, but the study of flows on graphs (and trivalent graphs in
particular) is a deep and richly developed subject.

Let us say that a P-typing is proper if no subterm is assigned a
type above the unit type I.

Theorem
Every unit-free planar lambda term has a proper Z2 × Z2-typing.

Proof.
This is equivalent to the Four Color Theorem.

17 / 24



Diagrams for skew-closed objects

We can view the typing constraints

@

C ≤ A ( B

B A

λ

A ( B ≤ C

AB

as defining (2-enriched) distributors @ : P 9 P ⊗ P∗ and
λ : P ⊗ P∗ 9 P. Indeed, these are exactly the adjoint pair of
distributors λ a @ associated to the functor (: Pop × P → P.

The definition of an imploid can be recast in diagrammatic terms
(@ = , λ = )...
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Diagrams for skew-closed objects (non-unital fragment)

C1

C2

η⇐=

C1

C2

B A

A1B1

B2 A2

C
β⇐=

B1 A1

B2 A2

B ( C ≤ D

BC
τ⇐=

(A ( B) ( (A ( C) ≤ D

A ( B

A ( C

A

C
B
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Diagrams for skew-closed objects (unital fragment)

⇐= ⇐=

I ≤ C
ι⇐=

A ( A ≤ C

C ≤ B
δ⇐=

C ≤ I ( B

B
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Some derived rules
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Some derived rules
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A combinatory correctness criterion

Theorem (Reed, Z)

A string diagram (with one incoming and one outgoing edge)
represents a unit-free planar term x ` M just in case it can be
reduced to the trivial diagram x ` x using only η, β, and τ moves.

Proof.
(⇐) is easy. (⇒) is by constructing a term x ` T using only
compositions of the “B” combinator x ` λy .λz .x(yz) such that
T →∗

β M.
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The End?...

Questions:
I Coherence axioms on 2-cells?
I Any useful applications of combinatory completeness?
I Extension to D. Thurston’s completeness theorem for the

algebra of knotted trivalent graphs?
I How should we view the space of P-typings of a lambda term?
I Any meaning to flow/cut duality?
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