The free bifibration over a functor

Noam Zeilberger¹

Ecole Polytechnique (LIX, Inria Partout)

Structure Meets Power 2024 Tallinn, 7 July 2024

¹Joint work with Bryce Clarke and Gabriel Scherer. Some parts written up, some in progress.

One category living over another category, such that <u>objects</u> of the category above may be *pushed* and *pulled* along <u>arrows</u> of the category below.

Formally:

Formally:

$$S \xrightarrow{\alpha} T$$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

Formally:

$$S \xrightarrow{f_S} f_* S \xrightarrow{f \setminus_g \alpha} T \qquad S \xrightarrow{\alpha} T$$

$$= \qquad \qquad =$$

$$A \xrightarrow{f} B \xrightarrow{g} C \qquad A \xrightarrow{f} B \xrightarrow{g} C$$

Formally:

$$S \xrightarrow{f_S} f_* S \xrightarrow{f \setminus_g \alpha} T \qquad S \xrightarrow{\alpha} T \qquad S \xrightarrow{\alpha} f \xrightarrow{\overline{g}_T} T$$

$$= \qquad \qquad = \qquad \qquad$$

Bifibrations as indexed categories and adjunctions

The operations of pushing and pulling along $f:A\to B$ of ${\mathfrak C}$ induce an adjunction

between the fiber categories $\mathfrak{D}_A = p^{-1}(\mathrm{id}_A)$ and $\mathfrak{D}_B = p^{-1}(\mathrm{id}_B)$.

This observation extends to an equivalence between bifibrations $\mathcal{D} \to \mathcal{C}$ and pseudofunctors $\mathcal{C} \to \mathcal{A}\mathrm{d}j$ into the category of small categories and adjunctions.

A few examples (from logic and computer science)

1. The forgetful functor $Subset \rightarrow Set$ is a bifibration, where:

$$f_*(S \subseteq A) = f(S)$$
 $f^*(T \subseteq B) = f^{-1}(T)$

A few examples (from logic and computer science)

1. The forgetful functor $Subset \rightarrow Set$ is a bifibration, where:

$$f_*(S \subseteq A) = f(S)$$
 $f^*(T \subseteq B) = f^{-1}(T)$

2. The functor $p: \Re el_{\bullet} \to \Re el$ is a bifibration, where:

$$r_*(S \subseteq A) = \{ b \mid \exists a. (a, b) \in r \land a \in S \} \quad (= " \diamondsuit_r S")$$

 $r^*(T \subseteq B) = \{ a \mid \forall b. (a, b) \in r \Rightarrow b \in T \} \quad (= " \blacksquare_r T")$

A few examples (from logic and computer science)

1. The forgetful functor $Subset \rightarrow Set$ is a bifibration, where:

$$f_*(S \subseteq A) = f(S)$$
 $f^*(T \subseteq B) = f^{-1}(T)$

2. The functor $p: \Re el_{\bullet} \to \Re el$ is a bifibration, where:

$$r_*(S \subseteq A) = \{ b \mid \exists a. (a, b) \in r \land a \in S \} \quad (= " \diamondsuit_r S")$$

 $r^*(T \subseteq B) = \{ a \mid \forall b. (a, b) \in r \Rightarrow b \in T \} \quad (= " \blacksquare_r T")$

3. A functor $p: \mathcal{Q} \to \mathcal{B}\Sigma$ representing a NDFA is a bifibration just in case the automaton is both (total) deterministic and codeterministic.

Given a functor, can we turn it into a bifibration in a universal way?

Okay! But how to construct Λ_p ? This question has been relatively little-studied:

- ▶ R. Dawson, R. Paré, and D. Pronk. Adjoining adjoints. *Adv. Mathematics*, 178(1):99–140, 2003.
- ► François Lamarche. Path functors in Cat. Unpublished, 2010. HAL-00831430.

We started from a new proof-theoretic construction of $\mathfrak{B}\mathrm{if}(p)$, via sequent calculus.

We started from a new proof-theoretic construction of Bif(p), via sequent calculus.

...then we noticed that $\mathfrak{B}\mathrm{if}(p)$ could be equivalently defined in terms of a certain natural double category of zigzags $\mathbb{Z}\mathfrak{C}$.

We started from a new proof-theoretic construction of Bif(p), via sequent calculus.

...then we noticed that $\mathcal{B}\mathrm{if}(p)$ could be equivalently defined in terms of a certain natural double category of zigzags $\mathbb{Z}\mathfrak{C}$.

...and that cells of $\mathbb{Z}^{\mathbb{C}}$ could be naturally represented using *string diagrams*.

We started from a new proof-theoretic construction of Bif(p), via sequent calculus.

...then we noticed that $\mathcal{B}\mathrm{if}(p)$ could be equivalently defined in terms of a certain natural double category of zigzags $\mathbb{Z}\mathfrak{C}$.

...and that cells of $\mathbb{Z}\mathcal{C}$ could be naturally represented using *string diagrams*.

We also studied the problem of characterizing the homsets of $\mathfrak{B}\mathrm{if}(p)$, with a (currently conjectured) normal form based on *multi-focusing* proofs.

We started from a new proof-theoretic construction of Bif(p), via sequent calculus.

...then we noticed that $\mathcal{B}\mathrm{if}(p)$ could be equivalently defined in terms of a certain natural double category of zigzags $\mathbb{Z}\mathfrak{C}$.

...and that cells of $\mathbb{Z}^{\mathcal{C}}$ could be naturally represented using *string diagrams*.

We also studied the problem of characterizing the homsets of $\mathfrak{B}\mathrm{if}(p)$, with a (currently conjectured) normal form based on *multi-focusing* proofs.

Finally, we found a couple *nice examples* of free bifibrations of a combinatorial nature.

A sequent calculus for $\mathfrak{B}\mathrm{if}(p)$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \sqsubset A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B} \qquad \frac{f : A \to B \quad T \sqsubset B}{f^* T \sqsubset A}$$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \sqsubset A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{f:A\to B\quad T\sqsubset B}{f^*\ T\sqsubset A}$$

$$(S \Longrightarrow_h T)$$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \sqsubset A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B} \qquad \frac{f : A \to B \quad T \sqsubset B}{f^* T \sqsubset A}$$

$$(S \Longrightarrow_h T)$$

$$\frac{S \underset{f_g}{\Longrightarrow} T}{f_* S \underset{g}{\Longrightarrow} T} \mathsf{L} f_*$$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \sqsubset A} \qquad \qquad \frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B} \qquad \qquad \frac{f : A \to B \quad T \sqsubset B}{f^* T \sqsubset A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{f:A\to B\quad T\sqsubset E}{f^*\ T\sqsubset A}$$

$$(S \Longrightarrow_h T)$$

$$\frac{S \Longrightarrow_{fg} T}{f_* S \Longrightarrow_{g} T} Lf_* \qquad \frac{S' \Longrightarrow_{f'} S}{S' \Longrightarrow_{f'f} f_* S} Rf_*$$

$$\frac{S' \Longrightarrow S}{S' \Longrightarrow f_* S} Rf_*$$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \sqsubset A} \qquad \qquad \frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B} \qquad \qquad \frac{f : A \to B \quad T \sqsubset B}{f^* T \sqsubset A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{f:A\to B\quad T\sqsubset B}{f^*\ T\sqsubset A}$$

$$(S \Longrightarrow_h T)$$

$$\frac{S \Longrightarrow T}{f_* S \Longrightarrow T} L f_*$$

$$\frac{S' \Longrightarrow S}{S' \Longrightarrow f_* S} Rf_*$$

$$\frac{S \underset{fg}{\Longrightarrow} T}{f_* S \underset{g}{\Longrightarrow} T} Lf_* \qquad \frac{S' \underset{f'}{\Longrightarrow} S}{S' \underset{f'f}{\Longrightarrow} f_* S} Rf_* \qquad \frac{T \underset{g'}{\Longrightarrow} T'}{g^* T \underset{gg'}{\Longrightarrow} T'} Lg^*$$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \subseteq A} \qquad \frac{S \subseteq A \quad f : A \to B}{f_* S \subseteq B} \qquad \frac{f : A \to B \quad T \subseteq B}{f^* T \subseteq A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{f:A\to B\quad T\sqsubset B}{f^*\ T\sqsubset A}$$

$$(S \Longrightarrow_h T)$$

$$S \Longrightarrow_{fg} T$$

$$T_* S \Longrightarrow_{g} T L f_*$$

$$\frac{S' \Longrightarrow S}{S' \Longrightarrow f_* S} Rf_*$$

$$\frac{S \underset{fg}{\Longrightarrow} T}{f_* S \underset{g}{\Longrightarrow} T} L f_* \qquad \frac{S' \underset{f'}{\Longrightarrow} S}{S' \underset{f'f}{\Longrightarrow} f_* S} R f_* \qquad \frac{T \underset{g'}{\Longrightarrow} T'}{g^* T \underset{gg'}{\Longrightarrow} T'} L g^* \qquad \frac{S \underset{fg}{\Longrightarrow} T}{S \underset{f}{\Longrightarrow} g^* T} R g^*$$

Bifibrational formulas:

$$(S \sqsubset A)$$

$$\frac{X \in \mathcal{D} \quad p(X) = A}{X \subseteq A} \qquad \frac{S \subseteq A \quad f : A \to B}{f_* S \subseteq B} \qquad \frac{f : A \to B \quad T \subseteq B}{f^* T \subseteq A}$$

$$\frac{S \sqsubset A \quad f : A \to B}{f_* S \sqsubset B}$$

$$\frac{f:A\to B\quad T\sqsubset E}{f^*\ T\sqsubset A}$$

$$(S \Longrightarrow_{h} T)$$

$$\frac{S \underset{fg}{\Longrightarrow} T}{f_* S \underset{g}{\Longrightarrow} T} L f_* \qquad \frac{S' \underset{f'}{\Longrightarrow} S}{S' \underset{f'f}{\Longrightarrow} f_* S} R f_* \qquad \frac{T \underset{g'}{\Longrightarrow} T'}{g^* T \underset{gg'}{\Longrightarrow} T'} L g^* \qquad \frac{S \underset{fg}{\Longrightarrow} T}{S \underset{f}{\Longrightarrow} g^* T} R g^*$$

$$\delta : X \to Y \in \mathcal{D} \qquad p(\delta) = f$$

$$\frac{S' \Longrightarrow S}{S' \Longrightarrow f_* S} Rf_*$$

$$\frac{\overrightarrow{g'}}{g^* T \Longrightarrow_{gg'} T'} L_g$$

$$\frac{S \Longrightarrow I}{S \Longrightarrow g^* T} R$$

$$\frac{\delta: X \to Y \in \mathcal{D} \qquad p(\delta) = f}{X \Longrightarrow Y} \delta$$

Equational theory on derivations

Consider four **permutation equivalences** on derivations, including

$$\frac{S \underset{fg}{\Longrightarrow} T}{S \underset{fgh}{\Longrightarrow} h_* T} Rh_* \sim \frac{S \underset{fg}{\Longrightarrow} T}{f_* S \underset{gh}{\Longrightarrow} h_* T} Lf_* \qquad \frac{S \underset{g}{\Longrightarrow} T}{f_* S \underset{fgh}{\Longrightarrow} h_* T} Rh_* \sim \frac{S \underset{g}{\Longrightarrow} T}{f_* S \underset{gh}{\Longrightarrow} h_* T} Lf^* \sim \frac{S \underset{g}{\Longrightarrow} T}{f^* S \underset{fgh}{\Longrightarrow} h_* T} Lf^* \sim \frac{S \underset{g}{\Longrightarrow} T}{f^* S \underset{fgh}{\Longrightarrow} h_* T} Rh_*$$

plus their symmetric versions with pushforward and pullback swapped.

Example derivations

Putting it all together

Let $\mathfrak{B}\mathrm{if}(p)$ be the category whose objects are bifibrational formulas and whose arrows are \sim -equivalence classes of derivations, with composition defined by cut-elimination. (Non-trivial to show this is a category!)

Let Λ_p be the functor $\mathfrak{B}\mathrm{if}(p) \to \mathfrak{C}$ sending $S \sqsubset A$ to A and $\alpha : S \Longrightarrow_f T$ to f.

Theorem. $\Lambda_p : \mathfrak{B}\mathrm{if}(p) \to \mathfrak{C}$ is the free bifibration on $p : \mathfrak{D} \to \mathfrak{C}$.

The double category of zigzags

Definition

Given a category \mathcal{C} , the double category of zigzags $\mathbb{Z}\mathcal{C}$ is defined as follows:

- ▶ objects are the objects of C
- ▶ horizontal arrows are the arrows of C
- ▶ vertical arrows are (not necessarily strictly alternating) zigzags of arrows in €
- double cells are generated by vertical pastings of four families of cells

modulo four relations...

Definition

...relations including

plus their symmetric versions with the vertical arrows flipped

- vertical composition is just concatenation of stacks of generators
- horizontal composition is defined in a more complicated way, by gluing vertical stacks of generators along their boundaries and reducing appropriately

Like any double category, $\mathbb{Z}\mathcal{C}$ may be viewed as an internal category in $\mathcal{C}\mathrm{at}$

$$\mathcal{C} \xleftarrow{\overset{\mathsf{src}}{\longleftarrow} \epsilon} \mathcal{ZC} \xleftarrow{\odot} \mathcal{ZC} \times_{\mathcal{C}} \mathcal{ZC}$$

where \mathcal{ZC} is the category whose objects are the vertical arrows (= zigzags), and whose arrows are double cells, composed horizontally.

Like any double category, $\mathbb{Z}\mathcal{C}$ may be viewed as an internal category in $\mathcal{C}\mathrm{at}$

$$\mathcal{C} \xleftarrow{\leftarrow \text{src}} \underbrace{\epsilon \longrightarrow}_{\text{tgt}} \mathcal{ZC} \longleftarrow \mathcal{C} \times_{\mathcal{C}} \mathcal{ZC}$$

where \mathcal{ZC} is the category whose objects are the vertical arrows (= zigzags), and whose arrows are double cells, composed horizontally.

Fact: $tgt : \mathcal{ZC} \to \mathcal{C}$ is the free bifibration over $id_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}!$ (And so is src.)

Like any double category, $\mathbb{Z}\mathcal{C}$ may be viewed as an internal category in $\mathcal{C}\mathrm{at}$

$$\mathcal{C} \xleftarrow{\overset{\mathsf{src}}{\longleftarrow} \epsilon} \mathcal{ZC} \xleftarrow{\odot} \mathcal{ZC} \times_{\mathcal{C}} \mathcal{ZC}$$

where \mathcal{ZC} is the category whose objects are the vertical arrows (= zigzags), and whose arrows are double cells, composed horizontally.

Fact: $tgt : \mathcal{ZC} \to \mathcal{C}$ is the free bifibration over $id_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}!$ (And so is src.)

$$D \downarrow C$$

Like any double category, $\mathbb{Z}\mathcal{C}$ may be viewed as an internal category in $\mathcal{C}\mathrm{at}$

$$\mathcal{C} \xleftarrow{\overset{\mathsf{src}}{\longleftarrow}} \mathcal{ZC} \xleftarrow{\odot} \mathcal{ZC} \times_{\mathcal{C}} \mathcal{ZC}$$

where \mathcal{ZC} is the category whose objects are the vertical arrows (= zigzags), and whose arrows are double cells, composed horizontally.

Fact: $tgt : \mathcal{ZC} \to \mathcal{C}$ is the free bifibration over $id_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}!$ (And so is src.)

$$\begin{array}{c}
\mathcal{D} \\
\downarrow \\
\mathcal{C} \leftarrow \text{src} \quad \mathcal{ZC} \xrightarrow{\text{tgt}} \mathcal{C}
\end{array}$$

Like any double category, $\mathbb{Z}\mathcal{C}$ may be viewed as an internal category in $\mathcal{C}\!\mathrm{at}$

$$\mathcal{C} \xleftarrow{\overset{\mathsf{src}}{\longleftarrow}} \mathcal{Z} \mathcal{C} \xleftarrow{\odot} \mathcal{Z} \mathcal{C} \times_{\mathcal{C}} \mathcal{Z} \mathcal{C}$$

where \mathcal{ZC} is the category whose objects are the vertical arrows (= zigzags), and whose arrows are double cells, composed horizontally.

Fact: $tgt : \mathcal{ZC} \to \mathcal{C}$ is the free bifibration over $id_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}!$ (And so is src.)

$$\begin{array}{ccc}
\mathcal{D} & \longleftarrow & \mathcal{B}if(p) \\
\downarrow & & \downarrow \\
\mathcal{C} & \longleftarrow & \mathcal{Z}\mathcal{C} & \longrightarrow & \mathcal{C}
\end{array}$$

Like any double category, $\mathbb{Z}\mathcal{C}$ may be viewed as an internal category in $\mathcal{C}\!\mathrm{at}$

$$\mathcal{C} \xleftarrow{\leftarrow \text{src}} \underbrace{\epsilon \longrightarrow}_{\text{tgt}} \mathcal{Z}\mathcal{C} \longleftarrow \underbrace{\circ} \mathcal{Z}\mathcal{C} \times_{\mathcal{C}} \mathcal{Z}\mathcal{C}$$

where \mathcal{ZC} is the category whose objects are the vertical arrows (= zigzags), and whose arrows are double cells, composed horizontally.

Fact: $tgt : \mathcal{ZC} \to \mathcal{C}$ is the free bifibration over $id_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}!$ (And so is src.)

Adjoining adjoints

Dawson, Paré, and Pronk posed (and solved) the problem of constructing a 2-category $\Pi_2 \mathcal{C}$ by freely adjoining right adjoints to all the arrows of a category \mathcal{C} .

The double category of zigzags provides another solution to this problem.

Indeed, $\Pi_2\mathcal{C}$ can be obtained as the underlying *vertical 2-category* of $\mathbb{Z}\mathcal{C}$, consisting of the objects, vertical arrows, and double cells framed by horizontal identities.

(Thus all three objects $\mathfrak{B}\mathrm{if}(p)$, $\mathbb{Z}\mathfrak{C}$, $\Pi_2\mathfrak{C}$ are closely related!)

For the case when $\mathcal C$ is a free category, DPP also introduced a graphical representation of 2-cells in $\Pi_2\mathcal C$ as certain planar diagrams. These diagrams may be neatly recovered as *string diagrams* for the double category $\mathbb Z\mathcal C$ (cf. Jaz Myers 2018).

String diagrams

Now for some examples!

Puzzle: what is the free bifibration over p? Hmm...

Puzzle: what is the free bifibration over *p*? Hmm...

Objects in $\mathfrak{B}\mathrm{if}(p)_0$ are isomorphic to even-length sequences $S \equiv f^* \, f_* \cdots f^* \, f_* \, 0$

Consider the following functor: $\begin{array}{ccc}
1 & 0 \\
p \downarrow & \\
2 & 0 \xrightarrow{f} 1
\end{array}$

Puzzle: what is the free bifibration over p? Hmm...

Objects in $\mathfrak{B}\mathrm{if}(p)_0$ are isomorphic to even-length sequences $S \equiv f^*\,f_*\cdots f^*\,f_*\,0$

Objects in $\mathfrak{B}\mathrm{if}(p)_1$ are isomorphic to odd-length sequences $T\equiv f_*\cdots f^*\,f_*\,0$

Consider the following functor: $\begin{array}{ccc}
1 & 0 \\
p & \\
2 & 0 \xrightarrow{f} 1
\end{array}$

Puzzle: what is the free bifibration over *p*? Hmm...

Objects in $\mathfrak{B}\mathrm{if}(p)_0$ are isomorphic to even-length sequences $S \equiv f^* f_* \cdots f^* f_* 0$

Objects in $\mathfrak{B}\mathrm{if}(p)_1$ are isomorphic to odd-length sequences $T\equiv f_*\cdots f^*\,f_*\,0$

What are the morphisms in the fibers? It may help to enumerate them...

One morphism $2 \rightarrow 1$

Two morphisms $1 \rightarrow 2$

Three morphisms $2 \rightarrow 2$

$$f^* f_* f^* f_* 0 \Longrightarrow_{id_0} f^* f_* f^* f_* 0$$

Punchline #1

Arrows $(f^*f_*)^m 0 \longrightarrow (f^*f_*)^n 0$ in $\mathfrak{B}\mathrm{if}(p)_0$ correspond to monotone maps $m \to n!$ Indeed, the push-pull adjunction captures the adjunction

between the category Δ of finite ordinals and order-preserving maps, and the category Δ_{\perp} of non-empty finite ordinals and order-and-least-element-preserving maps.

We were even more surprised that the total category is equivalent $\mathfrak{B}\mathrm{if}(p)\cong \Upsilon$ to the category of schedules introduced by Harmer, Hyland, and Melliès in their study of the categorical combinatorics of innocent strategies (LICS 2007).

Now consider the following functor:

Build the free bifibration $\mathcal{B}\mathrm{if}(p) \to \mathbb{N}$, and look at the fiber of 0.

Puzzle: what are its objects?

A category with Dyck walks as objects!

$$f^* f^* f_* f_* f^* f_* f^* f^* f^* f_* f_* f_* f_* 0 =$$

But what is a *morphism* of Dyck walks??

The ${\mathfrak B}{\mathrm i}{\mathrm f}(-)$ construction gives an answer. Is it something natural/known?

Reconstructing the Batanin-Joyal category of trees

Dyck paths have a well-known, canonical bijection with (finite rooted plane) trees.

Reconstructing the Batanin-Joyal category of trees

In other words, map nodes to nodes of the same height, respecting parents.

Punchline #2

Theorem: $\mathbb{B}\mathrm{if}(p:1\to\mathbb{N})_0\cong\mathsf{PTree}.$

(More generally, $\mathfrak{B}\mathrm{if}(p)_k\cong\mathsf{PTree}_k=\mathsf{category}$ of finite rooted plane trees whose rightmost branch is pointed by a node of height k.)

Summary

We have a clean and simple proof-theoretic construction of free bifibrations, with complentary algebraic & topological perspectives.

Work in progress on characterizing normal forms.

Some surprisingly rich combinatorics emerges as if out of thin air.

