
Complexity of normalization
for subsystems of untyped

linear lambda calculus

Noam Zeilberger
Structure meets Power Workshop 2021
27-28 June 2021

based on joint work with
Anupam Das, Damiano Mazza, and Tito Nguyễn

1

Background
lambda calculus, types, linearity, and Mairson's proof

of PTIME-completeness of linear lambda calculus

2

Lambda calculus: a very brief history*

*Source: Cardone & Hindley's "History of Lambda-calculus and Combinatory Logic"

Invented by Alonzo Church in late 20s, published in 1932

Original goal: foundation for logic without free variables

Minor defect: inconsistent!

Resolution: separate into an untyped calculus for computation,
and a typed calculus for logic.

(Both have since found many uses.)

3

Untyped lambda calculus: syntax

xt, u ∣ t(u) ∣ λx.t::=
variable application abstraction

terms

Suppose given some collection of variables.
Terms are built up from variables using two fundamental operations.

Given two terms t and u and a free variable x of t, we can define
the capture-avoiding substitution of u for x in t, written t[u/x].

4

Untyped lambda calculus: normalization

Computation through the rule of β-reduction:

(λx.t)(u) →ᵝ t[u/x]

Example: (λx.λy.λz.x(yz))(λa.a)(t)
→ᵝ (λy.λz.(λa.a)(yz))(t)

→ᵝ (λy.λz.yz)(t)
→ᵝ λz.t(z)

Sometimes paired with the rule of η-expansion:

t →η λx.t(x)

η← t

can apply to any matching subterm
(confluent and weakly normalizing)

5

Simply-typed lambda calculus

xAtA,uB ∣ (tA → B uA)B ∣ (λxA.tB)A → B::=

atomic type function type

typed
terms

types αA,B ∣ A → B::=

Terms are refined by annotating them with simple types:

Rules of β-reduction and η-expansion preserve typing, so STLC is
a well-behaved subsystem of untyped LC.

6

An aside on combinatory logic

Moses Schönfinkel
Haskell Curry

Open Logic ProjectPhotos of logicians obtained from the (see credits on page)

Consider the following set of closed terms:

B := λx.λy.λz.x(yz)

C := λx.λy.λz.(xz)y

K := λx.λy.x

W := λx.λy.(xy)y

This set forms a basis for untyped LC, meaning
any closed term is obtainable from them via
application and β-reduction.

(an ancestor to λ-calculus)

Observe how C, K, W respectively reorder, erase,
and duplicate variables...

7

Theorem [Church 1936]: there is no effective procedure for deciding
whether two untyped terms are β-equivalent, or whether a given term
has a β-normal form.

Untyped lambda calculus: normalization

The original proof relied on "Church encoding" of natural numbers

1 = λf.λx.f(x)
2 = λf.λx.f(f(x))
3 = λf.λx.f(f(f(x)))
⋮

as well as on a minimization operator due to Kleene, whose definition
was soon simplified by Turing...

8

Fixpoints, typing, and (non-)linearity

But also pay attention to the doubled uses of variables x and y!
A term where every variable is used exactly once is said to be linear.
(So B and C are linear, but K and W are non-linear, like Θ.)

Turing proved the equivalence of TMs and LC, and also
gave the first fixed-point combinator.*

(λx.λy.y(xxy))(λx.λy.y(xxy))Θ =

*see "Computability and λ-definability" and "The 𝔭-function in λ-K-conversion" in JSL 2:4, Dec 1937

The fixed-point combinator Θt =β t(Θt) cannot be assigned a simple type,
since it would require a paradoxical type τ = τ → τ.

9

Theorem [Mairson 2004]: deciding β-equivalence of
untyped* linear terms is complete for polynomial time.

Simply-typed vs linear normalization

Theorem [Statman 1979]: deciding β-equivalence of
simply-typed terms is not elementary recursive.

10

Mairson's proof

PTIME easy, since each β-reduction decreases the size of a linear term.

PTIME-hardness by reduction from the circuit value problem (CVP): any
boolean circuit C can be encoded as a linear term ⌜C⌝, so that

Linear lambda calculus and PTIME-completeness, JFP 14(6), Nov 2004

C(v₁,...,vₙ) ⇓ true iff ⌜C⌝ ⌜v₁⌝ ... ⌜vₙ⌝ =β ⌜true⌝.

11

Mairson's proof

true = λx.λy.λz.(xy)z
false = λx.λy.λz.(xz)y

bool = ∀αβ.(α ⊸ α ⊸ β) ⊸ (α ⊸ α ⊸ β)

Mairson replaces the usual "Church booleans" by the following:*
*up to inessential reordering of variables

The encoding is untyped, but w/2nd order quantifiers one can define

Linear lambda calculus and PTIME-completeness, JFP 14(6), Nov 2004

and then assign any open circuit C(x₁,...,xₙ) a uniform type

⌜C⌝ : bool ⊸ ... ⊸ bool ⊸ bool

n times

12

Some structural
perspectives

13

Species and operads

A (plain) species S is a family of sets of elements (Sn)n∈ℕ

An operad P is a species supporting composition and identity

f ∈ Pn g ∈ Pm

f ∘ᵢ g ∈ Pn+m-1 id ∈ P1

that satisfy appropriate associativity and neutrality laws.

A species/operad may be symmetric, cartesian, etc., if it comes
equipped with additional "structural" rules...

14

The cartesian operad of untyped lambda terms

basic judgment

t is an untyped term with free variables x₁ , ... , xₙ

x₁ , ... , xₙ ⊢ t

inductive definition of untyped terms in context

x ⊢ x Γ , Δ ⊢ t(u)
Γ ⊢ t Δ ⊢ u

Γ ⊢ λx.t
Γ , x ⊢ tvar app abs

Γ , y, x , Δ ⊢ t
Γ , x, y , Δ ⊢ t exc

Γ , x ⊢ t
Γ ⊢ t wea

Γ , x ⊢ t[x/y]
Γ , x , y ⊢ t con

cf. Hyland's "Classical lambda calculus in modern dress"

operadic composition = substitution of a term for a free variable.
(don't quotient by β, but could define a 2-operad...)

15

The cartesian operad of untyped lambda terms

strict = -wea affine = -con linear = -wea,-con

by dropping some of the structural rules, we can capture different
families of untyped terms:

these define suboperads and subsystems of LC, in the sense that
all three suboperads are closed under β-reduction (and η-equivalence).

Γ , y, x , Δ ⊢ t
Γ , x, y , Δ ⊢ t exc

Γ , x ⊢ t
Γ ⊢ t wea

Γ , x ⊢ t[x/y]
Γ , x , y ⊢ t con

symmetric operad

...and its non-cartesian suboperads

∋ W ∋ K ∋ C

16

Colored operads of typed lambda terms

Typed lambda terms may be organized into colored operads,
equipped with forgetful functors to operads of untyped terms.
Typing an untyped term may be seen as a "lifting" problem.

The operad of simply-typed general terms/=βη is equivalent to the

D

Tcf. Melliès & Zeilberger POPL 2015, Mazza et al POPL 2018

free closed cartesian operad

on a set of atoms, the operad of simply-typed linear terms/=βη to the

free closed symmetric operad

on a set of atoms.

17

Planar and bridgeless lambda calculus

We consider the following subsystems* of linear lambda calculus:

planar = -wea,-con,-exc bridgeless = -wea,-con,-(Γ=·)

All define operads closed under β-reduction...and these restrictions
are natural from an operadic perspective, among others!

non-symmetric operad non-unitary operad

planar bridgeless = -wea,-con,exc,-(Γ=·)

*Note the graph-theoretic terminology is justified! (cf. Alex Singh's talk)

• Bridgeless planar lambda terms were [implicitly!] enumerated by Tutte (1962).

• Planar lambda calculus was briefly discussed by Abramsky (2008).

• The original Lambek calculus (1958) was both non-symmetric + non-unitary.

Notes:

∋ B

18

Questions

19

Structure meets power?

Imposing the planarity and/or bridgeless restrictions makes it
harder to program ─ does it make it easier to decide β-equivalence?

• Positive answers would be exciting (e.g., complexity hierarchy by genus?)

• Negative answers would be counterintuitive (hence interesting)

We consider β-equivalence of untyped planar and/or bridgeless terms,
but we are interested in whether they can be typed uniformly.*

*Note all linear terms admit a principal simple type!

Questions of term representation (string vs graph) are potentially
important when considering subpolynomial complexity classes.

20

Answers
partial

21

Our current state of knowledge [planar terms]

Deciding =β of untyped planar terms is PTIME-complete!

• Proof is an adaptation of Mairson's reduction from CVP (to be discussed...)

• We found two different planar encodings of boolean circuits, though
 only one admits uniform typing.

• Both encodings are "inherently non-bridgeless"

22

Our current state of knowledge [bridgeless terms]

There is a polynomial time Cook reduction from β-normalization
of linear terms to β-normalization of bridgeless terms.

• This alas does not directly imply PTIME-hardness of deciding =β

• Our reduction (inserting "handlers" around vars) is inherently non-planar

23

Our current state of knowledge [planar bridgeless terms]

Deciding =β of untyped planar bridgeless terms is L-hard on the
graph representation, TC0-hard on the string representation.

• Reduction from directed forest reachability / counting.

• In both cases, our best upper bound is still P!

24

Revisiting Mairson's encoding of CVP

Non-planarity seems to be used in an essential way*...

true = λx.λy.λz.(xy)z vs. λx.λy.λz.(xz)y = false

bool = ∀αβ.(α ⊸ α ⊸ β) ⊸ (α ⊸ α ⊸ β)

*again we have reordered the arguments to true and false, which were both
 non-planar in Mairson's original bool = ∀αβ.α ⊸ α ⊸ (α ⊸ α ⊸ β) ⊸ β

Can we give a planar encoding of booleans & boolean circuits?

25

Specification of the reduction from CVP

We will provide the following:

1. two distinct closed planar terms true + false

2. closed planar terms implementing and-, or-, not-gates...

and true true = true
and true false = false

and false true = false
and false false = false

...

3. a closed planar term implementing a fan-out gate

copy B = λx.x B B for B ∈ {true,false}

4. a closed planar term implementing a swap gate

swap B₁ B₂ = λx.x B₂ B₁ for B₁,B₂ ∈ {true,false}
(Note that 123 ⇒ 4, by known reduction CVP → planar CVP!)

26

Solution #1

Take true and false to be as simple as possible...

and = not = \a.a(\b.b(\c.c))
or = \a.\b.(a(b(\e.e(\f.f))))(\c.c(\d.d))
copy = \a.\b.((a(\e.\f.(e(\i.i))(f(\g.g(\h.h)))))(b))(\c.c(\d.d))
swap = \a.\b.\c.(a(\f.b(c(f))))(\d.d(\e.e))

We can find these pretty quickly, since there are "only" 2112357
β-normal planar lambda terms of size ≤ 26. (see https://oeis.org/A000168)

Then look for the other circuit gates by brute force proof search!

false = \a.a
true = \a.a(\b.b)

27

Solution #2

Consider the following polymorphic type (where ι is an atom)*:

*it turns out that up to CPS translation, the same type appeared in Satoshi Matsuoka (2015),
 although Matsuoka's encoding of circuits was non-planar.

There are exactly two β-normal planar terms of type bool:

false = \k.\f.k(f)(\x.x)
true = \k.\f.k(\x.x)(f)

A boolean is "something which takes a continuation expecting a pair
of endofunctions, as well as an endofunction, and returns an answer".

bool = ∀α.((ι ⊸ ι) ⊸ (ι ⊸ ι) ⊸ α) ⊸ (ι ⊸ ι) ⊸ α

More generally, there are planar terms of type ∀α.((ι ⊸ ι)n ⊸ α) ⊸ (ι ⊸ ι)m ⊸ α

All other gates can be built and typed (replace brute force by "Tito force").

A new proof of P-time completeness of linear lambda calculus
28

Conclusion

Studying the planar/bridgeless subsystems of λ-calculus is
well-motivated by (varying types of) structural considerations.

• Deciding =β of untyped planar bridgeless terms is L-hard on the
 graph representation, TC0-hard on the string representation.

Does the decision problem for =β become any easier? So far
we have a mix of negative results and inconclusive results:

Worth comparing with recent positive results by Nguyễn and Pradic,
on the decreased expressive power of planar lambda calculi...

• There is a polynomial time Cook reduction from β-normalization
 of linear terms to β-normalization of bridgeless terms.

• Deciding =β of untyped planar terms is PTIME-complete.

29

